2.6 - Inverse of a Function

Inverse of a function:

- The inverse of a function f is denoted as f^{-1}
- The function and its inverse have the property that if $\mathrm{f}(a)=b$, then $f^{-1}(b)=a$
- So if $\mathrm{f}(5)=13$, then $f^{-1}(13)=5$.
- More simply put: The inverse of a function has all the same points as the original function, except that the x 's and y 's have been reversed.

It is important to note that $f^{-1}(x)$ is read as "the inverse of f at $x^{\prime \prime}$. The -1 does not behave like an exponent.

$$
f^{-1}(x) \neq \frac{1}{f(x)}
$$

To draw an inverse, all you need to do is swap the x and y coordinates of each point.

Finding Inverses by Numerically
Example 1: The table shows ordered pairs belonging to a function $f(x)$. Determine $f^{-1}(x)$, then state the domain and range of $f(x)$ and its inverse.

$\boldsymbol{f}(\boldsymbol{x})$	$\boldsymbol{f}^{-1(x)}$
$(-5,0)$	$(0,-5)$
$(-4,2)$	$(2,-4)$
$(-3,5)$	$(5,-3)$
$(-2,6)$	$(6,-2)$
$(0,7)$	$(7,0)$

$$
\begin{aligned}
& \frac{f(x)}{D:\{X \in \mathbb{R} \mid x=-5,-4,-3,-2,0\}} \\
& R:\{Y \varepsilon R \mid y=0,2,5,6,7\} \\
& \frac{f^{-1}(x)}{D:\{X \varepsilon \mathbb{R} \mid x=0,2,5,6,7\}}
\end{aligned}
$$

$$
R:\{Y \in \mathbb{R} \mid y=-5,-4,-3,-2,0\}
$$

Example 2:
a) Graph the function $f(x)=x^{2}$ and its inverse $f^{-1}(x)$

$\boldsymbol{f}(\boldsymbol{x})$	$\boldsymbol{f}^{-\mathbf{1}(\boldsymbol{x})}$
$(-3,9)$	$(9,-3)$
$(-2,4)$	$(4,-2)$
$(-1,1)$	$(1,-1)$
$(0,0)$	$(0,0)$
$(1,1)$	$(1,1)$
$(2,4)$	$(4,2)$
$(3,9)$	$(9,3)$

b) state the domain and range of both functions

$$
\begin{array}{ll}
\frac{f(x)}{D:}\{X \in \mathbb{R}\} & \frac{f^{-1}(x)}{D:\{X \in \mathbb{R} \mid x \geq 0\}} \\
R:\{Y \varepsilon \mathbb{R} \mid y \geq 0\} & R:\{Y \varepsilon \mathbb{R}\}
\end{array}
$$

Note: the domain and range of inverse functions are the reverse of each other.

Example 3:
Sketch the graph of $g(x)=-2 \sqrt{(-1 / 2 x)}+3$ then graph $\mathrm{g}^{-1}(x)$.

$$
f(x)=\sqrt{x} \rightarrow g(x)=-2 \sqrt{(-1 / 2 x)}+3 \rightarrow g^{-1}(x)
$$

x	y
0	0
1	1
4	2
9	3

$-2 x$	$-2 y+3$
0	3
-2	1
-8	-1
-18	-3

x	y
3	0
1	-2
-1	-8
-3	-18

Finding Inverses by Graphing

The graph of $f^{-1}(x)$ is the graph of $f(x)$ reflected in the line $y=x$. This is true for all functions and their inverses. If you find the midpoint of each pair of points from example 2 and connect them you can prove this theorem.

Example 4: Sketch the inverse of the $f(x)$

Finding Inverses Algebraically

Algebraic Method for finding the inverse:

1. Replace $f(x)$ with " y "
2. Switch the x and y variables
3. Isolate for y
4. replace y with $f^{-1}(x)$

Example 5: Find the inverse of the following functions...

$$
\text { a) } \begin{aligned}
g(x) & =\frac{(3 x)}{4} \\
y & =\frac{3 x}{4} \\
x & =\frac{3 y}{4} \\
4 x & =3 y \\
\frac{4 x}{3} & =y \\
g^{-1}(x) & =\frac{4 x}{3}
\end{aligned}
$$

b)

$$
\begin{aligned}
& h(x)=4 x+3 \\
& y=4 x+3 \\
& x=4 y+3 \\
& x-3=4 y \\
& \frac{x-3}{4}=y \\
& h^{-1}(x)=\frac{x-3}{4}
\end{aligned}
$$

c) $f(x)=x^{2}-1$

$$
y=x^{2}-1
$$

$$
x=y^{2}-1
$$

$$
x+1=y^{2}
$$

$$
\pm \sqrt{x+1}=y
$$

$$
f^{-1}(x)= \pm \sqrt{x+1}
$$

$$
\begin{gathered}
\text { d) } h(x)=\frac{4 x+3}{5} \\
y=\frac{4 x+3}{5} \\
x=\frac{4 y+3}{5} \\
5 x=4 y+3 \\
\frac{5 x-3}{4}=y \\
h^{-1}(x)=\frac{5 x-3}{4}
\end{gathered}
$$

$$
\text { e) } \begin{aligned}
& f(x)=2 x^{2}+16 x+29 \\
& y=\left(2 x^{2}+16 x\right)+29 \\
& y=2\left(x^{2}+8 x+16-16\right)+29 \\
& y=2\left(x^{2}+8 x+16\right)-32+29 \\
& y=2(x+4)^{2}-3 \\
& x=2(y+4)^{2}-3 \\
& \frac{x+3}{2}=(y+4)^{2} \\
& \pm \sqrt{\frac{x+3}{2}}=y+4 \\
& -4 \pm \sqrt{\frac{x+3}{2}}=y \\
& f^{-1}(x)=-4 \pm \sqrt{\frac{x+3}{2}}
\end{aligned}
$$

f)

$$
\begin{aligned}
& r(x)=\sqrt{(x)}+2 \\
& y=\sqrt{x}+2 \\
& x=\sqrt{y}+2 \\
& x-2=\sqrt{y} \\
& (x-2)^{2}=y \\
& r^{-1}(x)=(x-2)^{2}
\end{aligned}
$$

Note: for algebraic inverses of quadratic functions, before interchanging x and y 's you
must re-write in vertex form

