<u>2.6 - Inverse of a Function</u>

Inverse of a function:

- The inverse of a function f is denoted as f^{-1}
- The function and its inverse have the property that if f(a) = b, then $f^{-1}(b) = a$
- So if f(5) = 13, then $f^{-1}(13) = 5$.

• More simply put: The inverse of a function has all the same points as the original function, except that the x's and y's have been reversed.

It is important to note that $f^{-1}(x)$ is read as "the inverse of f at x". The -1 does not behave like an exponent.

$$f^{-1}(x)\neq\frac{1}{f(x)}$$

To draw an inverse, all you need to do is swap the x and y coordinates of each point.

Finding Inverses by Numerically

Example 1: The table shows ordered pairs belonging to a function f(x). Determine $f^{-1}(x)$, then state the domain and range of f(x) and its inverse.

		5(26)
f(x)	$f^{-1(x)}$	
(-5, 0)	(0,-5)	D·{XEIK X=-5,-4,-3,-2,0}
(-4, 2)	(2, -4)	R:{YER1y=0,2,5,6,7}
(-3, 5)	(5,-3)	$\mathcal{F}^{-1}(m)$
(-2, 6)	(61-2)	Di Svelland 25 (22
(0, 7)	(7,0)	D { X 2 K 1 2 = 0,0, 5,6,73
		K {VER (y =-5, -4, -3, -2, 0}

Example 2:

a) Graph the function $f(x) = x^2$ and its inverse $f^{-1}(x)$

b) state the domain and range of both functions

Note: the domain and range of inverse functions are the reverse of each other.

Example 3:

Sketch the graph of $g(x) = -2\sqrt{(-\frac{1}{2}x)} + 3$ then graph $g^{-1}(x)$.

g(x)=-2, (-1/2, x)+3 ->

Finding Inverses by Graphing

The graph of $f^{-1}(x)$ is the graph of f(x) reflected in the line y = x. This is true for all functions and their inverses. If you find the midpoint of each pair of points from example 2 and connect them you can prove this theorem.

Example 4: Sketch the inverse of the f(x)

Finding Inverses Algebraically

Algebraic Method for finding the inverse:

- **1.** Replace f(x) with "y"
- **2.** Switch the *x* and *y* variables
- **3.** Isolate for *y*
- **4.** replace y with $f^{-1}(x)$

Example 5: Find the inverse of the following functions...

$a) g(x) = \underline{(3x)}$	b) $h(x) = 4x + 3$
4	y=42+3
$y = \frac{3x}{4}$	$\chi = 4y+3$
N - 2	x-3 = 4y
x = <u>59</u> 4	$\frac{2^{2}-3}{4}=y$
47e = 3y	$b^{-1}(x) = \frac{x-3}{x-3}$
4 <u>7</u> 2 = y	an cros e q
$g'(x) = \frac{4x}{3}$	

c)
$$f(x) = x^2 - 1$$

 $y = x^2 - 1$
 $x = y^2 - 1$
 $x = y^2 - 1$
 $y = 4x + 3$
 $x = 4y + 3$
 5
 $5x = 4y + 3$
 $5x = 4y + 3$
 $5x = 3$
 $y = y$

e)
$$f(x) = 2x^2 + 16x + 29$$

 $y = (2x^2 + 16x) + 29$
 $y = 2(x^2 + 8x + 16 - 16) + 29$
 $y = 2(x^2 + 8x + 16) - 32 + 29$
 $y = 2(x + 4)^2 - 3$
 $x = 2(y + 4)^2 - 3$
 $x = 2(y + 4)^2 - 3$
 $\frac{x + 3}{2} = (y + 4)^2$
 $\frac{1}{2x^3} = y + 4$
 $-4 \pm \int \frac{2x^3}{2} = y$
 $f^{-1}(x) = -4 \pm \int \frac{2x^3}{2}$

Note: for algebraic inverses of quadratic functions, before interchanging *x* and *y*'s you must re-write in vertex form.

f)
$$r(x) = \sqrt{x} + 2$$

 $Y = \sqrt{x} + 3$
 $\chi = \sqrt{y} + 3$
 $\chi - 3 = \sqrt{y}$
 $(\chi - 3)^2 = Y$
 $r^{-1}(\chi) = (\chi - 3)^2$