Inverse of a function:

• The inverse of a function f is denoted as f^{-1}

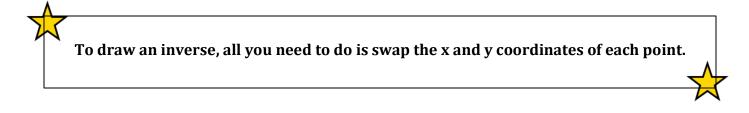
• The function and its inverse have the property that if f(a) = b, then $f^{-1}(b) = a$

• So if f(5) = 13, then $f^{-1}(13) = 5$

 \cdot More simply put: The inverse of a function has all the same points as the original function, except that the *x*'s and *y*'s have been reversed.

It is important to note that $f^{-1}(x)$ is read as "the inverse of f at x". The -1 does not behave like an exponent.

$$f^{-1}(x)\neq\frac{1}{f(x)}$$



Finding Inverses Numerically

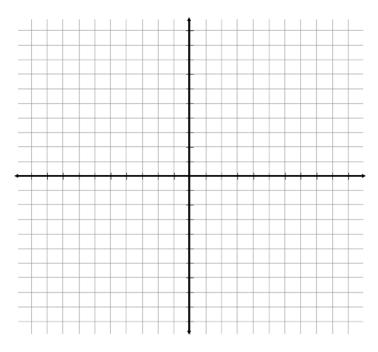
Example 1: The table shows ordered pairs belonging to a function f(x). Determine $f^{-1}(x)$, then state the domain and range of f(x) and its inverse.

f (x)	$f^{-1(x)}$
(-5, 0)	
(-4, 2)	
(-3, 5)	
(-2, 6)	
(0, 7)	

Example 2:

a) Graph the function $f(x) = x^2$ and its inverse $f^{-1}(x)$.

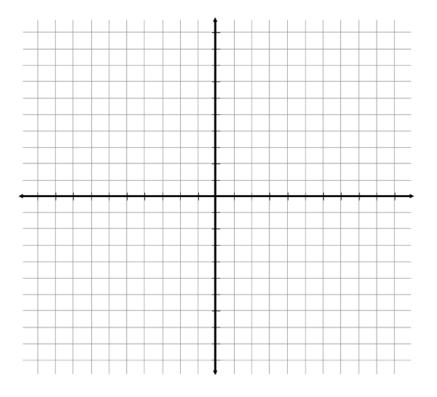
f (x)	$f^{-1(x)}$			



b) State the domain and range of both functions

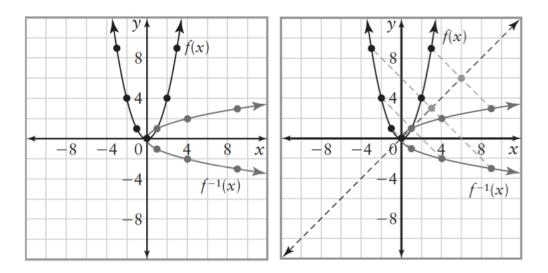
Example 3: Sketch the graph of $g(x) = -2\sqrt{\left(-\frac{1}{2}x\right)} + 3$, then graph $g^{-1}(x)$.

x	у			x	у

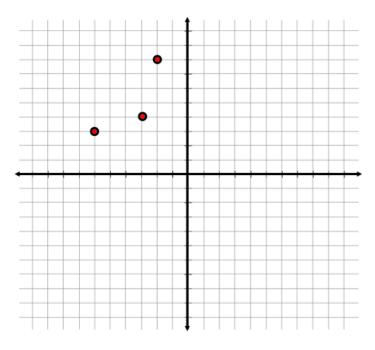


Finding Inverses by Graphing

The graph of $f^{-1}(x)$ is the graph of f(x) reflected in the line y = x. This is true for all functions and their inverses. If you find the midpoint of each pair of points from example 2 and connect them you can prove this theorem.



Example 4: Sketch the inverse of f(x)



Finding Inverses Algebraically

Algebraic Method for finding the inverse:

- Replace f (x) with "y"
 Switch the x and y variables
- **3.** Isolate for *y*
- 4. replace y with $f^{-1}(x)$

a) $g(x) = \frac{3x}{4}$

b)
$$h(x) = 4x + 3$$

c)
$$f(x) = x^2 - 1$$

d)
$$h(x) = \frac{4x+3}{5}$$

e) $f(x) = 2x^2 + 16x + 29$

Note: for algebraic inverses of quadratic functions, before interchanging x and y's you must re-write in vertex form.

f) $r(x) = \sqrt{x} + 2$