2.6 Inverse of a Function - Lesson MCR3U
 Jensen

Inverse of a function:

- The inverse of a function f is denoted as f^{-1}
- The function and its inverse have the property that if $\mathrm{f}(a)=b$, then $f^{-1}(b)=a$
- So if $f(5)=13$, then $f^{-1}(13)=5$
- More simply put: The inverse of a function has all the same points as the original function, except that the x 's and y 's have been reversed.
It is important to note that $f^{-1}(x)$ is read as "the inverse of f at x ". The -1 does not behave like an exponent.

$$
f^{-1}(x) \neq \frac{1}{f(x)}
$$

To draw an inverse, all you need to do is swap the x and y coordinates of each point.

Finding Inverses Numerically

Example 1: The table shows ordered pairs belonging to a function $f(x)$. Determine $f^{-1}(x)$, then state the domain and range of $f(x)$ and its inverse.

$\boldsymbol{f}(\boldsymbol{x})$	$\boldsymbol{f}^{-\mathbf{1 (x)}}$
$(-5,0)$	
$(-4,2)$	
$(-3,5)$	
$(-2,6)$	
$(0,7)$	

Example 2:

a) Graph the function $f(x)=x^{2}$ and its inverse $f^{-1}(x)$.

$f(x)$	$f^{-1(x)}$

b) State the domain and range of both functions

Example 3: Sketch the graph of $g(x)=-2 \sqrt{\left(-\frac{1}{2} x\right)}+3$, then graph $g^{-1}(x)$.

\boldsymbol{x}	\boldsymbol{y}

\boldsymbol{x}	\boldsymbol{y}

Finding Inverses by Graphing

The graph of $f^{-1}(x)$ is the graph of $f(x)$ reflected in the line $y=x$. This is true for all functions and their inverses. If you find the midpoint of each pair of points from example 2 and connect them you can prove this theorem.

Example 4: Sketch the inverse of $f(x)$

Finding Inverses Algebraically

Algebraic Method for finding the inverse:

1. Replace $f(x)$ with " y "
2. Switch the x and y variables
3. Isolate for y
4. replace y with $f^{-1}(x)$
a) $g(x)=\frac{3 x}{4}$
b) $h(x)=4 x+3$
c) $f(x)=x^{2}-1$
d) $h(x)=\frac{4 x+3}{5}$
e) $f(x)=2 x^{2}+16 x+29$

Note: for algebraic inverses of quadratic functions, before interchanging x and y 's you must re-write in vertex form.
f) $r(x)=\sqrt{x}+2$

