```
L2 - Exponential Decay
MCR3U
|
```


General Properties of Exponential Decay

Equation: $y=a(b)^{x}$
$a=$ initial amount
$b=$ decay factor $(0<b<1)$
$y=$ future amount
$x=\#$ of decay periods

To calculate x, use the equation:

$$
x=\frac{\text { total time }}{\text { time of } 1 \text { decay period }}
$$

DO IT NOW!

Nuclear power plants use Uranium-239 as a power source. U-239 has a half-life of about 2 years.
a) Complete the chart for the amount of 1000 mg sample that will be left after 10 years.

c) Write an equation to model this growth

$$
\begin{aligned}
& y=a(6)^{x} \\
& y=1000\left(\frac{1}{2}\right)^{x \rightarrow 0} \frac{t}{2} \\
& y=1000\left(\frac{1}{2}\right)^{t / 2} \\
& A(t)=1000\left(\frac{1}{2}\right)^{t / 2}
\end{aligned}
$$

b) Graph the relation

d) How much remains after 25 years?

$$
\begin{aligned}
& A(t)=1000\left(\frac{1}{2}\right)^{t / 2} \\
& A(25)=1000\left(\frac{1}{2}\right)^{25 / 2} \\
& A(25) \simeq 0.173 \mathrm{mg}
\end{aligned}
$$

Example 1: Plutonium-239 has a half-life of 24 years. Find the amount of a 50 mg sample left after 35 years.

$$
y=?
$$

$a=50$
$b=\frac{1}{2}$
$x=\frac{35}{24}$

If exponential decay is given as a percent use the equation:
$a=$ initial amount
$r=$ rate of decrease (use decimal value)

$$
x=\text { \# of decay periods }\left(\frac{\text { total time }}{\text { time of } 1 \text { decay period }}\right)
$$

Example 2:
You buy a new car for $\$ 24,000$. The value of the car decreases by 16% every year. How much will the car be worth in 8 years?

$$
\begin{aligned}
& y=? \\
& a=24000 \\
& r=0.16 \\
& x=8
\end{aligned}
$$

Example 3: An adult takes 400 mg of Advil. Each hour, the amount of Advil in the adult's system decreases by about 29\%. How much Advil will be left after 4 hours?

$$
\begin{aligned}
& a=400 \\
& r=0.29 \\
& x=\frac{4}{1}=4 \\
& y=?
\end{aligned}
$$

Example 4: U-239 has a half-life of about 2 years. If you start with a 1000 mg sample, how long will it take to decay to 10 mg ?

$$
\begin{aligned}
& a=1000 \\
& y=10 \\
& b=\frac{1}{2} \\
& x=\frac{t}{2}
\end{aligned}
$$

