

DO IT NOW!

Nuclear power plants use Uranium-239 as a power source. U-239 has a half-life of about 2 years.

a) Complete the chart for the amount of 1000mg sample that will be left after 10 years.

Years	# of half-life periods	Amount of U- 239 remaining
0	0	1000
2	1	500 2
4	2	250
6	3	125
8	4	62.52,
10	5	31.2502

b) Graph the relation

c) Write an equation to model this growth

d) How much remains after 25 years? $A(t) = \log(\frac{1}{2})^{t/2}$

Example 1: Plutonium-239 has a half-life of 24 years. Find the amount of a 50mg sample left after 35 years.

$$y = a(b)^{\chi}$$

 $y = 50(\frac{1}{2})^{35/24}$
 $y = 18.2 \text{ mg}$

If exponential decay is given as a percent use the equation: $y = \alpha (1 - \Gamma)^{\chi}$ a = initial amount r = rate of decrease (use decimal value) $x = \# of decay periods (<math>\frac{total time}{time of 1 decay period}$)

Example 2:

You buy a new car for \$24,000. The value of the car decreases by 16% every year. How much will the car be worth in 8 years?

$$y = ?$$

$$a = 24000$$

$$y = 24000 (1 - 0.16)^{8}$$

$$y = 24000 (0.84)^{8}$$

$$y = 8$$

$$y = 45949.02$$

Example 3: An adult takes 400mg of Advil. Each hour, the amount of Advil in the adult's system decreases by about 29%. How much Advil will be left after 4 hours?

a = 400 r = 0.29 $x = \frac{4}{1} = 4$ y = ?

 $y = \alpha (1 - \Gamma)^{\chi}$ $y = 400 (1 - 0.29)^{4}$ 01.6

Example 4: U-239 has a half-life of about 2 years. If you start with a 1000 mg sample, how long will it take to decay to 10 mg?

a = 1000	$y = \alpha (b)^{2}$
y = 10	0 = 1000(z)
$b = \frac{1}{a}$	0.01 = 0.5 %
$\chi = \frac{t}{a}$	$\frac{t}{2} = \log_{0.5}(0.01)$
	$t = 2 \log_{0.5}(0.01)$
	t ~ 13.3 years