

General Properties of Exponential Decay

Equation:

$a=$
$b=$
$y=$
$x=$

To calculate x, use the equation:

DO IT NOW!

Nuclear power plants use Uranium-239 as a power source. U-239 has a half-life of about 2 years.
a) Complete the chart for the amount of 1000 mg sample that will be left after 10 years.

Years	\# of half-life periods	Amount of U- $\mathbf{2 3 9}$ remaining
0	0	1000
2	1	500
4	2	
6		
8		
10		

c) Write an equation to model this growth
b) Graph the relation

d) How much remains after 25 years?

Example 1: Plutonium-239 has a half-life of 24 years. Find the amount of a 50 mg sample left after 35 years.

If exponential decay is given as a percent use the equation:
$a=$
$r=$
$x=$

Example 2:

You buy a new car for $\$ 24,000$. The value of the car decreases by 16% every year. How much will the car be worth in 8 years?

Example 3: An adult takes 400 mg of Advil. Each hour, the amount of Advil in the adult's system decreases by about 29\%. How much Advil will be left after 4 hours?

Example 4: U-239 has a half-life of about 2 years. If you start with a 1000 mg sample, how long will it take to decay to 10 mg ?

