3.2 Exponential Decay - Worksheet

MCR3U Iensen

1) During medical treatment, the number of bacterial cells in a patient decreases by a factor of $\frac{1}{2}$ every day. A patient has 1000000 bacterial cells on Monday, the first day of treatment.

a) How many bacterial cells will remain on Thursday?

$$A(t) = 1000000(\frac{1}{2})^{\frac{1}{2}}$$

 $A(3) = 1000000(\frac{1}{2})^{\frac{1}{2}}$
 $A(3) = 125000$

b) How many bacterial cells will remain on Sunday?

$$A(6) = 1000000(\frac{1}{2})^6$$

 $A(6) = 15625$

c) On what day will the number of remaining bacterial cells be 1950?

$$|950 = 1000000(\frac{1}{5})^{t}$$
 $0.00195 = (\frac{1}{5})^{t}$
 $t = log_{1/2}(0.00195)$
 $t \simeq 9 days (wednesday)$

- **2)** Tungsten-187 (W-187) is a radioactive isotope that has a half-life of 1 day. Suppose you start with a 100-mg sample...
- **a)** make a table of values that gives the amount of tungsten remaining at the end of each day for the next 4 days.

Time (days)	Amount of W-187 remaining
0	(00)
1	50
2	25
3	12.5
4	6.25

b) Write an equation in the form $f(x) = ab^x$ to relate the amount of W-187 remaining and time.

$$f(x) = \log(\frac{1}{2})^{x}$$

c) Sketch a graph of the relation

d) How much W-187 will remain after 1 week?

e) How long will it take for the W-187 to decay to 5% of its initial amount?

$$5 = 100 \left(\frac{1}{2}\right)^{\chi}$$

$$0.05 = \left(\frac{1}{2}\right)^{\chi}$$

$$\chi = \log_{1/2}(0.05)$$

$$\chi \simeq 4.32 \text{ day } \leq$$

- 3) Shylo is very excited about her brand new car! Although she paid \$20 000 for the car, its resale value will depreciate (decrease) by 30% of its current value every year.
- a) Write an equation relating the car's depreciated value, v, in dollars, to the time, t, in years since her purchase.

b) How much will Shylo's car be worth in...

c) Graph the depreciation function.

d) How long will it take for Shylo's car to depreciate to 10% of its original price?

$$2000 = 20000 (0.7)^{t}$$
 $0.1 = (0.7)^{t}$
 $t = \log_{0.7}(0.1)$
 $t \approx 6.46$ years

- 4) An isotope of a radioactive substance has a half-life of 23 days. Suppose that you start with an 800-mg sample of the material.

a) Find an equation that models this data
$$A(t) = 800 \left(\frac{1}{4}\right)^{t/33}$$

b) Use the equation to determine the amount of substance left after 100 days

Answers

1) a) 125 000 **b)** 15 625 **c)** next Wednesday

2) a)

Time (days)	Amount of W-187 remaining (mg)
0	100
1	50
2	25
3	12.5
4	6.25

d) 0.781 25 mg

e) 4.3 days

3) a) $v(t) = 20000(0.7)^t$ **b) i)** 14 000 **ii)** 9800 **c)**

d) about 6.5 years

4) a)
$$A = 800 \left(\frac{1}{2}\right)^{\frac{t}{23}}$$
 b) 39.29 mg