

```
MCR3U
Jensen

\section*{Example 1:}

Graph each exponential function. Identify the domain, range, intercepts, intervals of increase/decrease, and the equation of any asymptotes.
a) \(y=4\left(\frac{1}{2}\right)^{x}\)
\begin{tabular}{|c|c|}
\hline \(\boldsymbol{x}\) & \(\boldsymbol{y}\) \\
\hline & \\
\hline
\end{tabular}


Domain:

\section*{Range:}
\(x\)-int:
\(y\)-int:
intervals of increase/decrease:
asymptote:

\section*{Domain:}

\section*{Range:}
\(x\)-int:
\(y\)-int:
intervals of increase/decrease:
asymptote:

\section*{Example 2:}

Write the equation in the form \(y=a b^{x}\) for the graph shown.

Start by determining the growth factor ( \(b\) ). As \(x\) changes by 1 unit, what factor does \(y\) change by?



Next, determine the initial value (a) by plugging in the coordinates of one of the points ( \(x, y\) ) on the graph and the growth rate ( \(b\) ), then solve for \(a\).

Final Equation:

Example 3: A radioactive sample has a half-life of 3 days. The initial sample is 200 mg . Write a function to relate the amount remaining, in milligrams, to the time, in days.

What do you know so far about when a function of the form \(y=a(b)^{x}\) is increasing and when it is decreasing?

Example 4: Make a rough sketch of the graph of the following functions based on your knowledge of whether they are increasing or decreasing.
a) \(y=2\left(\frac{1}{2}\right)^{x}\)

b) \(y=2(4)^{x}\)

c) \(y=-2(4)^{x}\)

d) \(y=-2\left(\frac{1}{2}\right)^{x}\)
```

