L5 – Transformations of Exponential Functions
MCR3U
Jensen

Warm-up: Which of the following graphs are the same?

 $f(x) = 32^{x}$ $g(x) = 9^{x}$ $h(x) = 2^{3x}$ $n(x) = 2^{5x}$ $p(x) = 3^{3x}$ $q(x) = 3^{2x}$ $r(x) = 8^{x}$

Exponential functions can be transformed in the same way as other function. The graph of can be found by performing transformations on the graph of $f(x) = b^x$

Changes to the *y*-coordinates (vertical changes)

c: vertical translation $g(x) = b^x + c$

The graph of $g(x) = b^x + c$ is a vertical translation of the graph of b^x by c units.

a: vertical stretch/compression

The graph of $g(x) = \mathbf{a} \cdot b^x$ is a vertical stretch or compression of the graph of b^x by a factor of a.

 $g(\mathbf{x}) = \mathbf{a} \cdot b^{\mathbf{x}}$

If $a > 1$ OR $a < -1$, vertical stretch by a factor of $ a $
If $-1 < a < 1$, vertical compression by a factor of $ a $
If $a < 0$, vertical reflection (reflection over the <i>x</i> -axis)

Changes to the x-coordinates (horizontal changes)

d: horizontal translation

The graph of $g(x) = b^{x-d}$ is a horizontal translation of the graph of b^x by d units.

 $g(x) = b^{x-d}$

k: horizontal stretch/compression $g(x) = b^{kx}$

The graph of $g(x) = b^{kx}$ is a horizontal stretch or compression of the graph of b^x by a factor of $\frac{1}{k}$

If k > 1 OR k < -1, **horizontal compression** by a factor of $\frac{1}{|k|}$ If -1 < k < 1, **horizontal stretch** by a factor of $\frac{1}{|k|}$ If k < 0, **horizontal reflection** (reflection over the *y*-axis)

Don't forget that the order of the transformations matters!!!

Do the reflections, stretches, and compressions first. Then do the horizontal and vertical shifts.

Example 1: Graph the function $g(x) = 2(2)^{\frac{1}{2}(x-1)}$

Step 1: What is the base function?

Step 2: Describe the transformations made to the base function.

Step 3: Make a table of values for the base function and the transformed function g(x)

x	у

у

Step 4: Graph both functions

Example 2: Graph the function $g(x) = 3^{2x-4} + 1$

Hint 1: The 'k' value must be common factored out.

Hint 2: 'c' value is the horizontal asymptote.

Step 1: What is the base function?

Step 2: Describe the transformations made to the base function.

x y

x	у

Step 4: Graph the transformed function

Step 3: Make a table of values for the base function and the transformed function g(x)

Example 3: Graph the function $g(x) = -2\left(\frac{1}{2}\right)^{x-3} - 2$

Step 1: What is the base function?

Step 2: Describe the transformations made to the base function.

Step 3: Make a table of values for the base function and the transformed function g(x)

x	у

x	у

Step 4: Graph the transformed function

