Warm-up: Which of the following graphs are the same?
$f(x)=32^{x}$
$g(x)=9^{x}$
$h(x)=2^{3 x}$

$$
n(x)=2^{5 x}
$$

$p(x)=3^{3 x}$

$$
q(x)=3^{2 x}
$$

$$
r(x)=8^{x}
$$

Exponential functions can be transformed in the same way as other function. The graph of can be found by performing transformations on the graph of $f(x)=b^{x}$

Changes to the y-coordinates (vertical changes)

c : vertical translation $\quad g(x)=b^{x}+c$
The graph of $g(x)=b^{x}+c$ is a vertical translation of the graph of b^{x} by c units.

If $c>0$, the graph shifts UP
If $c<0$, the graph shifts DOWN

a : vertical stretch/compression

$$
\boldsymbol{g}(\boldsymbol{x})=a \cdot b^{x}
$$

The graph of $g(x)=a \cdot b^{x}$ is a vertical stretch or compression of the graph of b^{x} by a factor of a.

If $a>1$ OR $a<-1$, vertical stretch by a factor of $|a|$ If $-1<a<1$, vertical compression by a factor of $|a|$ If $a<0$, vertical reflection (reflection over the x-axis)

Changes to the x-coordinates (horizontal changes)

d : horizontal translation

$$
g(x)=b^{x-d}
$$

The graph of $g(x)=b^{x-d}$ is a horizontal translation of the graph of b^{x} by d units.

> If $d>0$, the graph shifts RIGHT If $d<0$, the graph shifts LEFT

k: horizontal stretch/compression

$$
g(x)=b^{k x}
$$

The graph of $g(x)=b^{k x}$ is a horizontal stretch or compression of the graph of b^{x} by a factor of $\frac{1}{k}$

If $k>1$ OR $k<-1$, horizontal compression by a factor of $\frac{1}{|k|}$ If $-1<k<1$, horizontal stretch by a factor of $\frac{1}{|k|}$ If $k<0$, horizontal reflection (reflection over the y-axis)

Don't forget that the order of the transformations matters!!!
Do the reflections, stretches, and compressions first. Then do the horizontal and vertical shifts.

Example 1: Graph the function $g(x)=2(2)^{\frac{1}{2}(x-1)}$
Step 1: What is the base function?

Step 2: Describe the transformations made to the base function.

Step 3: Make a table of values for the base function and the transformed function $g(x)$

\boldsymbol{x}	\boldsymbol{y}

Step 4: Graph both functions

Example 2: Graph the function $g(x)=3^{2 x-4}+1$
Hint 1: The ' k ' value must be common factored out.
Hint 2: ' c ' value is the horizontal asymptote.
Step 1: What is the base function?

Step 2: Describe the transformations made to the base function.

Step 3: Make a table of values for the base function and the transformed function $g(x)$

\boldsymbol{x}	\boldsymbol{y}

Step 4: Graph the transformed function

Example 3: Graph the function $g(x)=-2\left(\frac{1}{2}\right)^{x-3}-2$
Step 1: What is the base function?

Step 2: Describe the transformations made to the base function.

Step 3: Make a table of values for the base function and the transformed function $g(x)$

\boldsymbol{x}	\boldsymbol{y}

Step 4: Graph the transformed function

