L3 – Transformations of Sine and Cosine Part 1 MCR3U Jensen

Section 1: Review of Sine and Cosine Functions

$$y = a \sin[k(x-d)] + c \text{ OR } y = a \cos[k(x-d)] + c$$

a	k	d	С
Vertical stretch or	Horizontal stretch or	Phase shift	Vertical shift
	compression by a factor of $\frac{1}{k}$.	d > 0; shift right	c > 0; shift up
Vertical reflection if $a < 0$	Horizontal reflection if $k <$	d < 0 shift left	c < 0: shift down
a = amplitude	0.		
	$\frac{360}{ k } = period$		

Graphs of parent functions $y = \sin x$ and $y = \cos x$ using key points:

x	у

x	у

Section 2: Graphing Transformed Sinusoidal Functions

Example 1: Graph $y = 2 \sin x + 1$ using transformations. Then state the amplitude, period, and number of cycles between 0° and 360°.

Amplitude:

Period:

Number of cycles between 0° and 360° :

Example 2: Graph $y = -1.5 \cos[3(x - 30^\circ)] + 0.5$ using transformations. Then state the amplitude, period, and number of cycles between 0° and 360°.

Amplitude:

Period:

Example 3: Graph $y = \sin[-4(x - 60^\circ)] + 2$ using transformations. Then state the amplitude, period, and number of cycles between 0° and 360° .

Amplitude:

Period:

Number of cycles between 0° and 360° :