5.3 Transformations of Sine and Cosine Worksheet #2

MCR3U

Jensen

- 1) A sinusoidal function has an amplitude of 5 units, a period of 120°, and a maximum at (0, 3).
 - a) Represent the function with an equation using a sine function

b) Represent the function with an equation using a cosine function

- **2)** A sinusoidal function has an amplitude of $\frac{1}{2}$ units, a period of 720°, and a maximum at $\left(0, \frac{3}{2}\right)$.
 - a) Represent the function with an equation using a sine function

b) Represent the function with an equation using a cosine function

3) Determine the equation of a cosine function that represents the graph shown.

4) The relationship between the stress on the shaft of an electric motor and time can be modelled with a sinusoidal function. Determine an equation of a function that describes stress in terms of time.

5) Determine the equation of the sine function shown.

6) Represent the graph of the following functions using a sine and cosine function.

Answers

1) a)
$$y = 5 \sin [3(x + 30^\circ)] - 2$$
 b) $y = 5 \cos 3x - 2$

2) a)
$$y = \frac{1}{2} \sin \left[\frac{1}{2} (x + 180^{\circ}) \right] + 1$$
 b) $y = \frac{1}{2} \cos \frac{1}{2} x + 1$

3)
$$y = \cos [4(x - 82.5^{\circ})] + 2$$

4)
$$y = 3 \sin(9000x) + 8$$
 OR $y = 3 \cos[9000(x - 0.01)] + 8$

5) a)
$$y = 2 \sin [6(x - 15^\circ)] + 1$$

6)
$$y = 4 \cos 2x$$
 and $y = 4 \sin [2(x + 45^{\circ})]$.