Section 1: How to Determine the Equation of a Sine or Cosine Function Given its Graph

1) Find the max and min of the function
2) Find the amplitude of the function (a-value): $a=\frac{\max -\min }{2}$
$1 \& 2$

3) Find the vertical shift (c-value): $c=$ max - amplitude 3 (this finds the 'middle' of the function)

4) Find the period (in degrees) of the function using a starting point and ending point of a full cycle
5) Calculate the k-value. $k=\frac{360}{\text { period }} \rightarrow$ period $=\frac{360}{|k|}$

$4 \& 5$

6) Determine the phase shift (d-value)

- for $\sin x$: trace along the center line and find the distance between the y-axis and the bottom left of the closest rising midline.
- for $\cos x$: the distance between the y-axis and the closest maximum point

Section 2: Determining the Equation of a Sinusoidal Function Given its Graph

Example 1: For each of the following graphs, determine the equation of a sine and cosine function that represents each graph:
a)

$$
\begin{aligned}
& a=\frac{\max -\min }{2}=\frac{3-(-1)}{2}=2 \\
& k=\frac{360}{\text { period }}=\frac{360}{30-20}=\frac{360}{10}=36
\end{aligned}
$$

$$
c=\max -|a|=3-2=1
$$

$$
d_{\sin }=7.5 \quad d_{\sin } \rightarrow \text { look for } x \text {-value of closest rising midline }
$$

$$
d_{c o s}=10 \quad d_{\text {cos }} \rightarrow \text { look for } x \text {-value of closest maximum }
$$

Time (s)

$$
y=2 \cos [36(x-10)]+1
$$

$$
y=2 \sin [36(x-7.5)]+1
$$

b)

$$
\begin{aligned}
& a=\frac{\max -\min }{2}=\frac{5-1}{2}=2 \\
& k=\frac{360}{\text { period }}=\frac{360}{210-120}=\frac{360}{90}=4 \\
& c=\max -|a|=5-2=3 \\
& d_{\sin }=30 \\
& d_{\cos }=d_{\sin }+\frac{90}{|k|}=30+\frac{90}{4}=52.5
\end{aligned}
$$

$$
y=2 \cos [4(x-52.5)]+3
$$

$$
y=2 \sin [4(x-30)]+3
$$

$$
\text { Note: The } x \text {-value of the maximum point was not obvious from the graph. You need to know that maximum points are always } \frac{90}{|k|} \text { to }
$$ the right of the rising midline point. Also, if you knew where the maximum point was, the rising midline point would be $\frac{90}{|k|}$ to the left of the max.

$$
d_{\text {cos }}=d_{\text {sin }}+\frac{90}{|k|} \quad \text { OR } \quad d_{\text {sin }}=d_{\text {cos }}-\frac{90}{|k|}
$$

c)

$$
\begin{aligned}
& a=\frac{\max -\min }{2}=\frac{3-(-5)}{2}=4 \\
& k=\frac{360}{\text { period }}=\frac{360}{210-90}=\frac{360}{120}=3 \\
& c=\max -|a|=3-4=-1 \\
& d_{\sin }=60 \\
& d_{\cos }=-30
\end{aligned}
$$

$$
y=4 \cos [3(x+30)]-1
$$

$$
y=4 \sin [3(x-60)]-1
$$

Example 2: A sinusoidal function has an amplitude of 3 units, a period of 180 degrees and a max point at (0,5). Represent the function with an equation in two different ways.

$$
\begin{aligned}
& a=3 \\
& k=\frac{360}{\text { period }}=\frac{360}{180}=2 \\
& c=\max -|a|=5-3=2 \\
& d_{\cos }=0 \\
& d_{\sin }=d_{\cos }-\frac{90}{|k|}=0-\frac{90}{2}=-45 \\
& \quad y=3 \cos (2 x)+2
\end{aligned}
$$

$$
y=3 \sin [2(x+45)]+2
$$

Example 3: A sinusoidal function has an amplitude of 5 units, a period of 120 degrees and a maximum at (0,3). Represent the function with an equation in two different ways.
$a=5$
$k=\frac{360}{\text { period }}=\frac{360}{120}=3$
$c=\max -|a|=3-5=-2$
$d_{\text {cos }}=0$
$d_{\text {sin }}=d_{\cos }-\frac{90}{|k|}=0-\frac{90}{3}=-30$
$y=5 \cos (3 x)-2$

