## L6 - Trig Applications Part 2 <br> MCR3U <br> Jensen

Example 1: The height, $h$, in meters, above the ground of a rider on a Ferris wheel after $t$ seconds can be modelled by the sine function:

$$
h(t)=10 \sin [3(t-30)]+12
$$

a) Graph the function using transformations

| $\boldsymbol{y}=\sin \boldsymbol{x}$ |  |
| :---: | :---: |
| $\boldsymbol{x}$ | $\boldsymbol{y}$ |
| 0 | 0 |
| 90 | 1 |
| 180 | 0 |
| 270 | -1 |
| 360 | 0 |$\quad$| $h(t)=10 \sin [3(t-30)]+12$ |  |
| :---: | :---: |
| $\mathbf{x}+\mathbf{3 0}$ | $\mathbf{1 0} \boldsymbol{y}+\mathbf{1 2}$ |
| 30 | 12 |
| 60 | 22 |
| 90 | 12 |
| 120 | 2 |
| 150 | 12 |


b) Determine the max height, min height, and time for one revolution.
$\max =22 \mathrm{~m}$
$\min =2 \mathrm{~m}$
period $=150-30=120$ seconds
c) Represent the function using the equation of a cosine function

$$
\begin{aligned}
& a=10 \\
& k=3 \\
& c=12 \\
& d_{\text {cos }}=d_{\sin }+\frac{90}{|k|}=30+\frac{90}{3}=60 \\
& \boldsymbol{h}(t)=\mathbf{1 0} \cos [\mathbf{3}(t-\mathbf{6 0})]+\mathbf{1 2}
\end{aligned}
$$

d) What is the height of the rider after 35 seconds? Use both equations to verify your answer.
$h(35)=10 \cos [3(35-60)]+12$
$h(35)=10 \sin [3(35-30)]+12$
$h(35)=10 \cos [-75]+12$
$h(35)=10 \sin [15]+12$
$h(35)=14.6 m$
$h(35)=14.6 \mathrm{~m}$

Example 2: Skyscrapers sway in high-wind conditions. In one case, at $t=2$ seconds, the top floor of a building swayed 30 cm to the left $(-30 \mathrm{~cm})$ and at $t=12$ seconds, the top floor swayed 30 cm to the right $(+30 \mathrm{~cm})$ of its starting position.
a) What is the equation of a cosine function that describes the motion of the building in terms of time?

$$
\begin{aligned}
& a=\frac{\max -\min }{2}=\frac{30-(-30)}{2}=30 \\
& k=\frac{360}{\text { period }}=\frac{360}{20}=18 \\
& c=\max -|a|=30-30=0 \\
& d_{\cos }=12 \\
& y=30 \cos [18(t-12)]
\end{aligned}
$$

b) What is the equation of a sine function that describes the motion of the building in terms of time?
$d_{\sin }=d_{\cos }-\frac{90}{|k|}=12-\frac{90}{18}=7$
$y=30 \cos [18(t-7)]$

Example 3: The height of the tide on a given day at ' $t$ ' hours after midnight is modelled by:

$$
h(t)=5 \sin [30(t-5)]+7
$$

a) Find the max and min values for the height of the depth of the water.
$\max =c+|a|=7+5=12$
$\min =c-|a|=7-5=2$
b) What time is high tide? What time is low tide?


Note: period $=\frac{360}{k}=\frac{360}{30}=12$; therefore there are 2 cycles in a 24 hour period.
The first rising midline is at $t=5$. A max will occur $\frac{90}{k}$ to the right of the rising midline.
Therefore, there is a max at $5+\frac{90}{k}=5+\frac{90}{30}=8$. There will be another high tide in 12 hours (since this is the period of the function).

High tide $=8$ am AND 8 pm

The first rising midline is at $t=5$. A min will occur $\frac{90}{k}$ to the left of the rising midline.
Therefore, there is a min at $5-\frac{90}{k}=5-\frac{90}{30}=2$. There will be another high tide in 12 hours (since this is the period of the function).

Low tide = 2am AND 2 pm
c) What is the depth of the water at 9 am?
$h(9)=5 \sin [30(9-5)]+7$
$h(9)=5 \sin [120]+7$
$h(9)=11.3 \mathrm{~m}$

Example 4a: A wind turbine has a height of 55m from the ground to the center of the turbine. Graph one cycle of the vertical displacement of a 10 m blade turning counterclockwise. Assume the blade starts pointing straight down.



Example 4b: Model the rider's height above the ground versus angle using a transformed sine and cosine function.

$$
\begin{aligned}
& a=\frac{\max -\min }{2}=\frac{65-45}{2}=10 \\
& k=\frac{360}{\text { period }}=\frac{360}{360}=1 \\
& c=\max -|a|=65-10=55 \\
& d_{\cos }=180 \\
& d_{\sin }=90
\end{aligned}
$$

$$
h=10 \cos (x-180)+55 \quad y=10 \sin (x-90)+55
$$

