Chapter 2(part 2) Transformations

WORKBOOK

MCR3U

$$g(x) = af[k(x-d)] + c$$

MCR3U Jensen

1) Describe the transformations, in order, that are being done to the function f(x).

a)
$$g(x) = -4f(x)$$

- vertical reflection over the x-axis (-4)
- vertical stretch b.a.f.o 4 (44)

b)
$$g(x) = f(3x)$$

- horizontal compression b.a.f.o $\frac{1}{3}$ $\left(\frac{x}{3}\right)$

c)
$$g(x) = \frac{1}{2}f(-x)$$

- vertical compression boof o & (})
- horizontal restection over the y-axis (-2)

d)
$$g(x) = -\frac{1}{3}f[\frac{1}{2}(x+1)]$$

- vertical compression bato 1 (4)
- vertical restection over the x-axis (-y)
- horrzontal stretch bato 2. (2x)
- phase shift I writ left (2-1)

e)
$$g(x) = 5f[-2(x-4)]$$

- vertical stretch bafo 5. (Sy)
- horrantal confression bafo $\frac{1}{2} \left(\frac{2}{2} \right)$
- horrortal reflection across the y-axis. (-x)
- phase shift 4 units right (x+4)

$$f) g(x) = -2f(8x) + 4$$

- vertical stretch bofo 2 (24)
- vertical reflection over the x-oxis (-y)
- horrzoutal compression bato & (x)
- shift up 4 units. (4+4)

h)
$$g(x) = -\frac{1}{4}f[-3(x-1)] - 5$$

- vertical conpression boso 4 (4)
- vertical reflection over x-axis (-y)
 - hontantal compression bato { (2)
 - horrowal reflection over y-axis (-X)
 - phose shift 1 unit right (x+1)
- shift 5 units down (y-5)

i)
$$g(x) = 4f\left[-\frac{1}{2}(x+2)\right] - 1$$

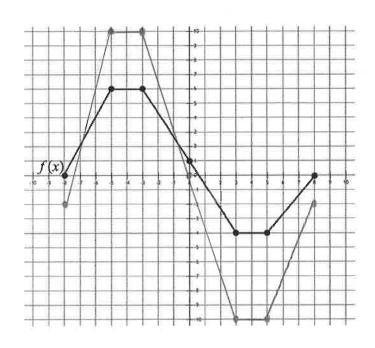
- vertical stretch bafo 4 (4y)
- horrortal stretch baso 2 (2x)
- horizontal reflection over y-axis (-X)
- phase shift & units left (x-2)
- shift down 1 unit (y-1)

2) For the graph of f(x) given, sketch the graph of g(x) after the given transformation.

a)
$$g(x) = 2f(x) - 2$$

- vertical stretch base 2 (24)
- Shift down 2 units (y-2)

 $(\chi, 2y-2)$

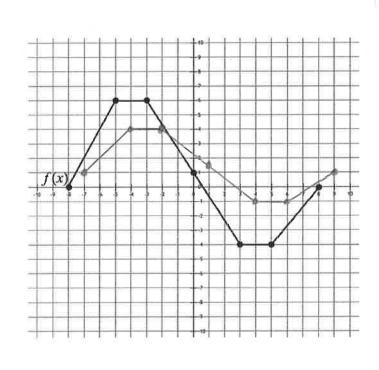


b)
$$g(x) = \frac{1}{2}f(x-1)+1$$

- vertical compression bodo $\frac{1}{2}(\frac{y}{2})$

- phase shift right 1 unit $(\chi+1)$

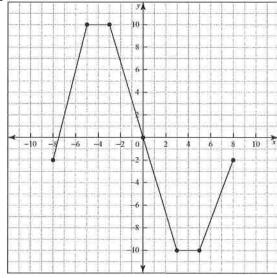
- phase shift ψ 1 unit $(y+1)$
 $(\chi+1)$



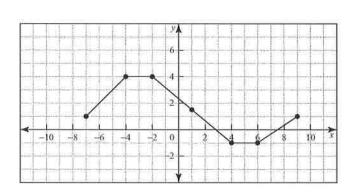
Answers

- 1) a) vertical reflection over the x-axis and vertical stretch bafo 4 (-4y)
- b) horizontal compression bafo $\frac{1}{3} \left(\frac{x}{3} \right)$
- c) vertical compression bafo $\frac{1}{2} \left(\frac{y}{2} \right)$, horizontal relection over the y-axis (-x)
- d) vertical reflection over the x-axis and vertical compression bafo $\frac{1}{3} \left(\frac{y}{-3} \right)$, horizontal stretch bafo 2 (2x), phase shift left 1 unit (x 1)
- e) vertical stretch bafo 5 (5y), horizontal reflection over the y-axis and horizontal compression bafo $\frac{1}{2}$ ($\frac{x}{-2}$), phase shift right 4 units (x + 4)
- f) vertical reflection over the x-axis and vertical stretch bafo 2 (-2y), horizontal compression bafo $\frac{1}{8} \left(\frac{x}{8}\right)$, shift up 4 units (y + 4)
- h) vertical reflection over the x-axis and vertical compression bafo $\frac{1}{4} \left(\frac{y}{-4} \right)$, horizontal reflection over the y-axis and horizontal compression bafo $\frac{1}{3} \left(\frac{x}{-3} \right)$, phase shift right 1 unit (x+1), shift down 5 units (y-5)
- i) vertical stretch bafo 4 (4y), horizontal reflection over the y-axis and horizontal stretch bafo 2 (-2x), hase shift left 2 units (x-2), shift down 1 unit (y-1)

2) a)



b)



Transformations of Quadratic Functions - Worksheet

MCR3U Iensen

SOLUTIONS

1) For each of the following graphs:

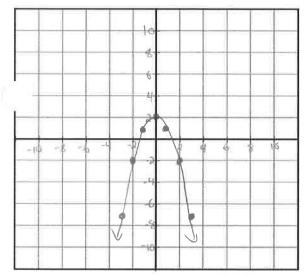
- i) describe the transformations in order (a \rightarrow k \rightarrow d \rightarrow c)
- ii) create a table of values for the transformed function
- iii) graph the transformed function

x	у	
-3	9	
-2	4	
- \		
0	0	
١		
2	4	

Key points for

 $y = x^2$

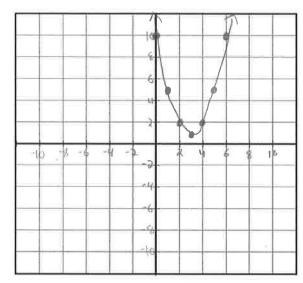
a)
$$y = -x^2 + 2$$



- 1) vertical respection (-4)
- 2) shift up 2 (4+2)

X	-4+2
-3	-7
- 2	-2
- \	1
0	2
{	1
2	-2
3	-7
	r

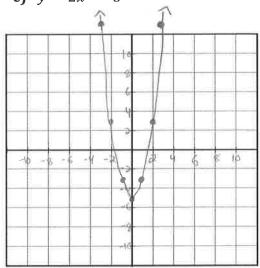
b)
$$y = (x-3)^2 + 1$$



- 1) shift right 3 units (2+3) 2) shift up 1 unit (y+1)

1	
4+1	
10	
5	
2	
1	
2	
5	
10	
	10 5 2 1 2 5

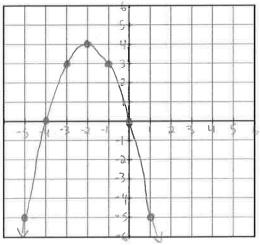
c)
$$y = 2x^2 - 5$$



- 1) vertical stretch bato 2 (24)
- 2) shift down 5 units (y 5)

X	24-5
-3	13
-2	3
- {	-3
0	-5
1 (4	- 3
2	3
3	13

e)
$$y = -(x+2)^2 + 4$$



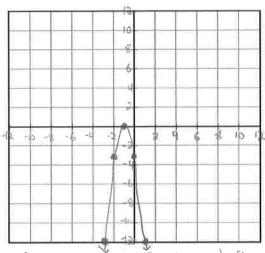
- 1) votice) restection (-4)
- 2) shift 1897 2 units (x-21)
- 3) shift up 4 units (y+41)

2-2	-4-4
= 5	-5
-4	0 =
-3	3
- 5)	4
F (3
O	0
1	-5

d)
$$y = -3(x+1)^2$$

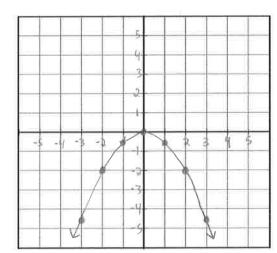
(-3,9) (-2,4)

(-1,1) (0,0) (1,1) (2,1) (3,9)



1) vertical steech by 3 and vertical reflection (-34)
2) phase skift 18+1 unit (X-1)

f)
$$y = -\frac{1}{2}x^2$$



1) vertical stretch boto & and vortical restlection ()

X	52
-3	-4.5
-2	-2
-1	-0.5
0	0
1	-0.5
2	-2
3	-4.5

2) For each function g(x):

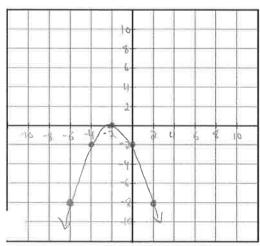
- describe the transformations from the parent function $f(x) = x^2$
- ii) create a table of values of image points for the transformed function
- iii) graph the transformed function and write its equation

(-0,7)
(-151)
(0,9)
(1, 1)
(2,4)

(3,9)

(-3,9)

a)
$$g(x) = -2f\left[\frac{1}{2}(x+2)\right]$$

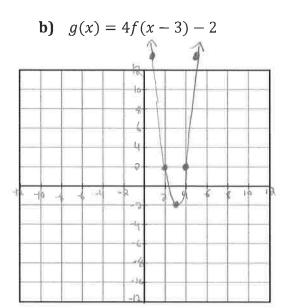


- 1) wortical smetch boto 2; wartical reflection (-24)
- 2) horizontal stretch baso 2 (ax)
- 3) shift lost 2 units (x-2)

$$g(x) = -2\left(\frac{1}{2}(x+2)\right)^{2}$$

$$g(x) = -2\left(\frac{1}{4}(x+2)\right)^{2}$$

$$g(x) = -\frac{1}{2}(x+2)^{2}$$

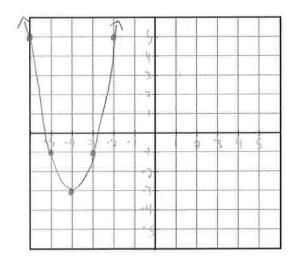


- 1) votice stretch boto 4 (44)
- a) shift right 3 units (243) 3) shift down 2 units (y-a)

2+3	44-2
Ö	34
1	14
2	2
2	1
2 3 4 5	2
6	34

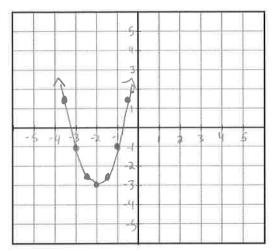
$$g(x) = 4(x-3)^2 - 2$$

c)
$$y = 2f(x+4) - 3$$



- 1) vertical smotch box a (ay)
- 2) shift 1094 units (x-4)
- 3) shift down 3 units (4-3)

d)
$$y = \frac{1}{2}f[-2(x+2)] - 3$$



- 1) vertical compression bodo & (4)
- 2) horroutal compression baso & ; horroutal reflection (2)
- 3) lest 2 units (x-2)
- 4) down 3 units (y-3)

$$g(x) = \frac{1}{2} \left[-a(x+2)^2 - 3 \right]$$

MCR3U Iensen

$Key points of y = \sqrt{x}$		
x	у	
0	0	
1	1	
Ч	2	
9	3	

1) 1) State the transformations to the parent function $f(x) = \sqrt{x}$ in the order that you would do them.

$$f(x) = 2\sqrt{x+1} - 3$$

- Vetical Stietch bodo 2

- shift left 1 unit

- shift down 3 units

b)
$$f(x) = 3\sqrt{\frac{1}{2}(x-5)} + 4$$

-vertical stretch bafo 3

- horizontal stretch boso 2

- shift right 5 units

- shift up 4 units

c)
$$f(x) = -\frac{1}{2}\sqrt{-3(x)} - 6$$

- vertical compression befo }

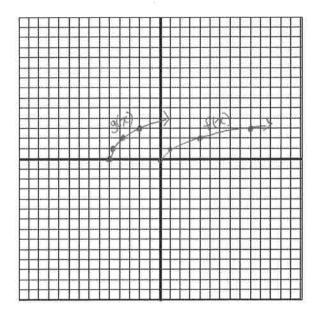
- vertical reflection

- horizontal compression boso }

- horizontal reflection

- Shift down 6 units.

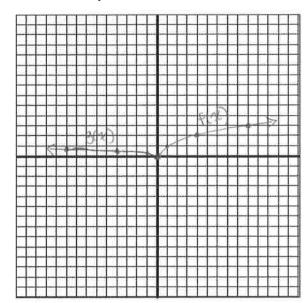
- 2) Graph the parent function, $f(x) = \sqrt{x}$. Describe the transformations in order, make a table of values of image points, write the equation of the transformed function and graph it.
- a) g(x) = f[3(x+5)]



- 1) horizontal compression locks & (2)
- 2) shift lost sunits (7-5)

9(X)	
$\frac{2}{3}$ -5	9
-5	0
-4.7	Ī
-3.7	2
-2	3
	$\frac{2}{3} - 5$

b)
$$g(x) = \frac{1}{4}f(-x)$$



- 1) vertical compression baso of (5)
- 2) horizontal reflection (-x)

$$f(x) = \frac{-2}{4}$$

$$(0,0)$$

$$(1,1)$$

$$(4,2)$$

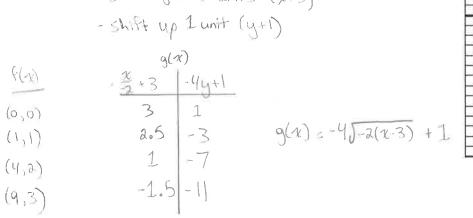
$$(9,3)$$

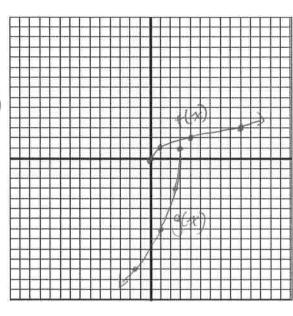
$$-9$$

$$0.75$$

c)
$$g(x) = -4f[-2(x-3)] + 1$$

- Vertical Stretch bafs 4; votical reflection (-44)
- horrontal compression baso & ; horrontal reflection (2)
- Shift right 3 units (x+3)
- shift up 1 unit (y+1)





- 3) Use the description to write the transformed function, g(x).
- a) The parent function $f(x) = \sqrt{x}$ is compressed vertically by a factor of $\frac{1}{3}$ and then translated (shifted) 3 units left.

$$q = \frac{1}{3}$$

$$g(x) = \frac{1}{3} \sqrt{x+3}$$

b) The parent function $f(x) = \sqrt{x}$ is reflected over the x-axis, stretch horizontally by a factor of 3 and then translated 1 unit left and 4 units down.

$$g(x) = -1\sqrt{\frac{1}{3}(x+1)} - 4$$

MCR3U 'ensen

	x	y
	-2	- 12
	- \	
	- 12	- 2
	12	2
	1	1
	2	12

1) State the transformations to the parent function $f(x) = \frac{1}{x}$ in the order that you would do them.

a)
$$g(x) = \frac{2}{3(x-1)}$$

b)
$$g(x) = \frac{-1}{x+2} - 1$$

c)
$$g(x) = \frac{1}{\frac{1}{2}(x+1)} - 0.5$$

- Vertical stretch bafo 2

- horrontal confression boto 3

- Shift right 1 unit

b)
$$g(x) = \frac{1}{x+2} - 1$$

- vertical reflection

- shift left 2 units

- shift down I wit

- horizontal stretch bato 2

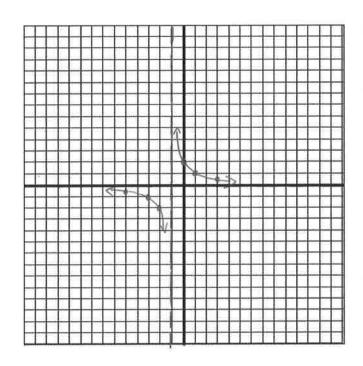
- Shift lest 1 unit

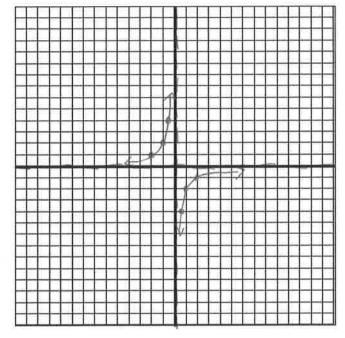
- shift down 0.5 units

2) Describe the transformations to the parent function $f(x) = \frac{1}{x}$ in order, make a table of values of image points, write the equation of the transformed function and graph it.

a)
$$g(x) = f[\frac{1}{2}(x+1)]$$

$$\mathbf{b}) \ g(x) = 2f(-x)$$





- horizontal stretch bofo 2 (2x)
 shift left I unit (x-1)
- $\frac{f(x)}{(-2,-0.5)} \qquad \frac{2x-1}{-5} \qquad \frac{y}{-5} \qquad \frac{3(x)}{-5} \qquad \frac{-3}{-2} \qquad \frac{-1}{2} \qquad \frac{-2}{2} \qquad \frac{(0.5,2)}{(2,0.5)} \qquad \frac{1}{3} \qquad \frac{1}{0.5}$

- vertical stretch boso 2 (24)
- horizontal reflection (-X)

$$\frac{f(x)}{(-2,-0.5)} - \frac{3(x)}{-2}$$

$$\frac{(-1,-1)}{(-0.5,-2)} = \frac{2}{1}$$

$$\frac{1}{-2}$$

$$\frac{1}{-2}$$

$$\frac{1}{-2}$$

$$\frac{1}{-2}$$

$$\frac{1}{-2}$$

$$\frac{1}{-2}$$

$$\frac{1}{-2}$$

$$\frac{1}{-2}$$

$$9(x) = \frac{1}{\frac{1}{a}(x+1)}$$

$$g(x) = \frac{2}{-x}$$

c)
$$g(x) = -f[-2(x-0.5)] + 1$$

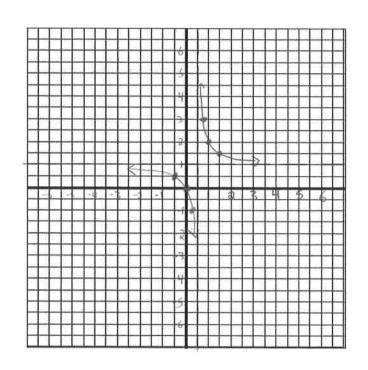
- vertical reflection (-y)

- horizontal reflection (-x)

- horizontal compression bods $\frac{1}{2}$ ($\frac{x}{2}$)

- shift right 0.5 units ($\frac{x}{2}$)

- shift up I unit ($\frac{x}{2}$)



- 3) Use the description to write the transformed function, g(x).
- a) The parent function, $f(x) = \frac{1}{x}$, is compressed vertically by a factor of $\frac{1}{3}$ and then translated (shifted) 3 units left.

$$a = \frac{1}{3}$$

$$g(x) = \frac{1}{3}$$

$$g(x) = \frac{1}{3} \quad OR \quad \frac{1}{3(x+3)}$$

b) The parent function, $f(x) = \frac{1}{x}$, is reflected over the x-axis, stretch horizontally by a factor of 3 and then translated 1 unit left and 4 units down.

$$g(x) = \frac{-1}{\frac{1}{3}(x+1)} - 4$$
 or $\frac{-3}{241} - 4$

2.6 - Inverse of a Function

Inverse of a function:

- The inverse of a function f is denoted as f^{-1}
- The function and its inverse have the property that if f(a) = b, then $f^{-1}(b) = a$
- So if f(5) = 13, then $f^{-1}(13) = 5$.
- More simply put: The inverse of a function has all the same points as the original function, except that the x's and y's have been reversed.

It is important to note that $f^{-1}(x)$ is read as "the inverse of f at x". The -1 does not behave like an exponent.

$$f^{-1}(x)\neq\frac{1}{f(x)}$$

To draw an inverse, all you need to do is swap the x and y coordinates of each point.

Finding Inverses by Numerically

Example 1: The table shows ordered pairs belonging to a function f(x). Determine $f^{-1}(x)$, then state the domain and range of f(x) and its inverse.

f(x)	$f^{-1(x)}$
(-5, 0)	(0,-5)
(-4, 2)	(2,-4)
(-3, 5)	(5,-3)
(-2, 6)	(6,-2)
(0,7)	(7,0)

$$\frac{5(20)}{D: \{XER|X=-5,-4,-3,-2,0\}}$$

$$R: \{YER|Y=0,2,5,6,7\}$$

$$F^{-1}(20)$$

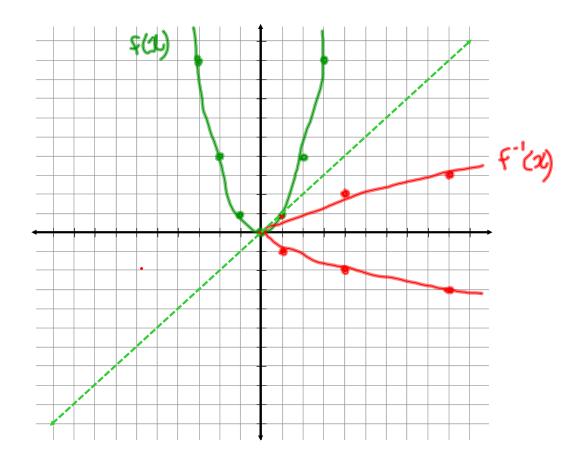
$$D: \{XER|X=0,2,5,6,7\}$$

$$R: \{YER|Y=-5,-4,-3,-2,0\}$$

Example 2:

a) Graph the function $f(x) = x^2$ and its inverse $f^{-1}(x)$

$f^{-1(x)}$
(9,-3)
(4,-2)
(1,-1)
(o,d)
(1,1)
(4,2)
(9,3)



b) state the domain and range of both functions

Note: the domain and range of inverse functions are the reverse of each other.

Example 3:

Sketch the graph of $g(x) = -2\sqrt{(-\frac{1}{2}x)} + 3$ then graph $g^{-1}(x)$.

$$f(x) = \sqrt{x} \implies g(x) = -2\sqrt{-1/2}x^{2} + 3 \implies g'(x)$$

$$x = y = -2x = -2y + 3 = x = y$$

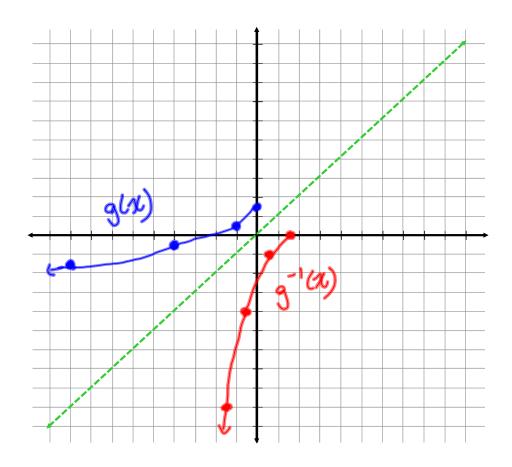
$$0 = 0 = 0 = 3 = 0$$

$$1 = 1 = 0$$

$$-2 = 1 = 0$$

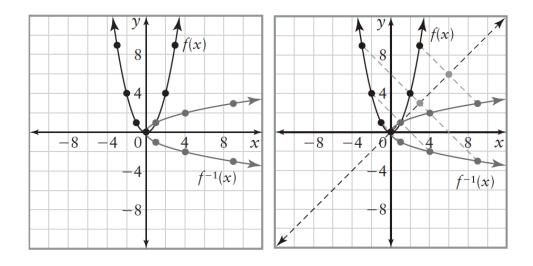
$$-3 = 1$$

$$9 = 3$$

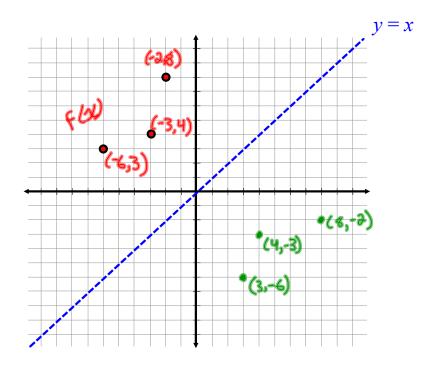


Finding Inverses by Graphing

The graph of $f^{-1}(x)$ is the graph of f(x) reflected in the line y = x. This is true for all functions and their inverses. If you find the midpoint of each pair of points from example 2 and connect them you can prove this theorem.



Example 4: Sketch the inverse of the f(x)



Finding Inverses Algebraically

Algebraic Method for finding the inverse:

- 1. Replace f(x) with "y"
- **2.** Switch the *x* and *y* variables
- **3.** Isolate for *y*
- **4.** replace y with $f^{-1}(x)$

Example 5: Find the inverse of the following functions...

a)
$$g(x) = \underbrace{(3x)}_{4}$$

$$y = \underbrace{3x}_{4}$$

$$x = \underbrace{3y}_{4}$$

$$4x = 3y$$

$$4x = 3y$$

$$4x = 3y$$

$$5(x) = \underbrace{4x}_{3}$$

b)
$$h(x) = 4x + 3$$

 $y = 4x + 3$
 $x = 4y + 3$
 $x - 3 = 4y$
 $x - 3 = 4y$

c)
$$f(x) = x^2 - 1$$

 $y = x^2 - 1$
 $x = y^2 - 1$
 $x + 1 = y^2$
 $\frac{1}{2}(x) = \frac{1}{2}(x + 1)$

d)
$$h(x) = \frac{4x+3}{5}$$

 $y = \frac{4x+3}{5}$
 $x = \frac{4y+3}{5}$
 $5x = \frac{4y+3}{5}$
 $5x = \frac{4y+3}{5}$
 $5x = \frac{4y+3}{5}$

e)
$$f(x) = 2x^{2} + 16x + 29$$

 $y = (2x^{2} + 16x) + 29$
 $y = 2(2x^{2} + 8x + 16 - 16) + 29$
 $y = 2(2x^{2} + 8x + 16) - 32 + 29$
 $y = 2(2x + 4)^{2} - 3$
 $x = 2(y + 4)^{2} - 3$
 $x = 2(y + 4)^{2}$
 $x = 2(y + 4)^{2}$

Note: for algebraic inverses of quadratic functions, before interchanging *x* and *y*'s you must re-write in vertex form.

f)
$$r(x) = \sqrt{(x)} + 2$$

 $y = \sqrt{x} + 2$
 $\chi = \sqrt{y} + 2$
 $\chi - 2 = \sqrt{y}$
 $(\chi - 2)^2 = y$
 $(\chi - 2)^2 = (\chi - 2)^2$

MCR3U Jensen

- 1) List the transformations of, in words, of f(x) for each of the following functions.
- a) g(x) = 2f(x)

- Vertical stretch base 2 - phase shift right 3 units - horizontal stretch base 3

b) h(x) = f(x - 3)

c) $j(x) = f\left(\frac{1}{2}x\right)$

 $\mathbf{d)}\;k(x)=f(-x)$

- horizontal reflection - shift down 3 units.

e) m(x) = f(x) - 3

2) List the transformations, in words, of f(x) for each of the following functions in the order you would do them in.

$$\mathbf{a)} g(x) = -f(x+2)$$

- vertical reflection

- phase shift left 2 units

b)
$$h(x) = f(3x) + 2$$

- horizontal compression bafo } - vertral stretch bafo 3

- shift up 2 units

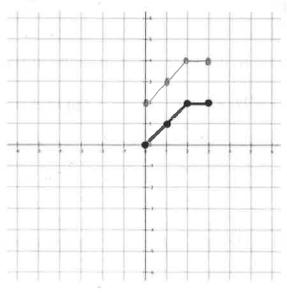
$$\mathbf{c)}\, j(x) = 3f(-x)$$

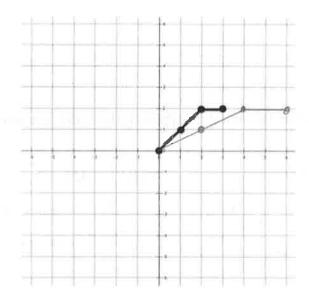
- horizontal reflection

- 3) List the transformations, in words, of $f(x) = x^2$ to $g(x) = 3(x-2)^2 11$ in the order you would do them.
 - Vertical stretch befo 3
 - phase shift right 2 units
 - shift down Il units
- **4)** List the transformations, in words of $f(x) = \sqrt{x}$ to $g(x) = 2\sqrt{(x-3)} 9$ in the order you would do them.
 - vertical stretch BAFO 2
 - phase shift right 3 units
 - shift down qunits

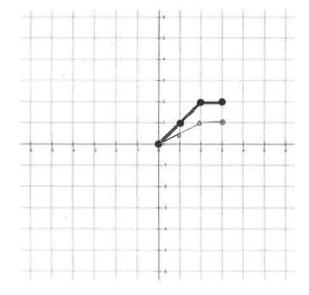
5) Perform the following transformations on the graphs below.

a) translate up 2 units

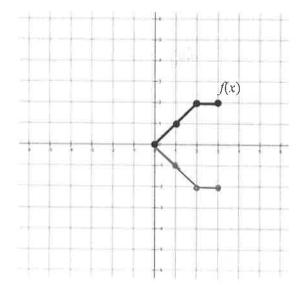




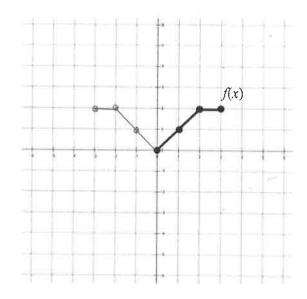
b) horizontal stretch by a factor of 2



6) For the graph of f(x) given, sketch the graph of g(x) after the given transformation. List the transformations in words as well.



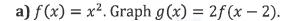
$$\mathbf{a)}\ g(x) = -f(x)$$



b)
$$g(x) = f(-x)$$

7) For each function g(x):

- i) describe the transformations from the parent function f(x)
- ii) create a table of values of image points for the transformed function
- iii) graph the parent function and the transformed function and write its equation

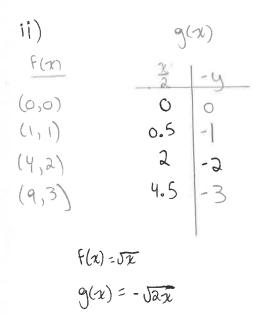


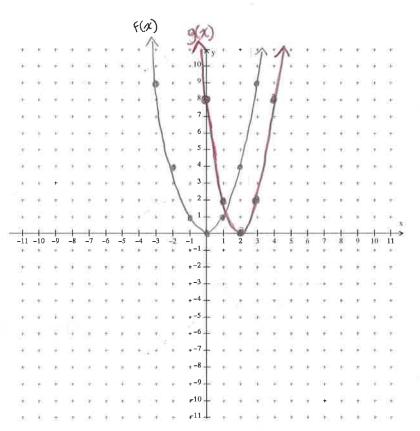
i) vertical stretch BAFO 2 (24) shift right 2 units (2+2)

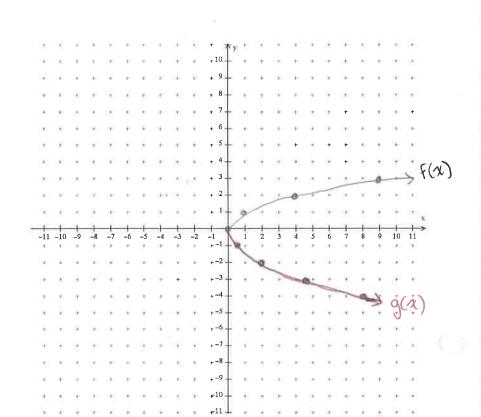
	21/12	ugw	2 units	(2+2)
ii) f(x)		9(x)		
(-3,9)			142	24
(-2,4)			-	18
(-1,1)			0	8
(0,0)			1	2
(1,1)			2	0
(2,4)			3	2
(3,9)			4	8
(3)1)	l		5	18
		99		
	F(X):	- x2		

$$f(x) = x^2$$
 $g(x) = 2(x-2)^2$

i) vertical reflection (-y)
horizontal compression boso (2)





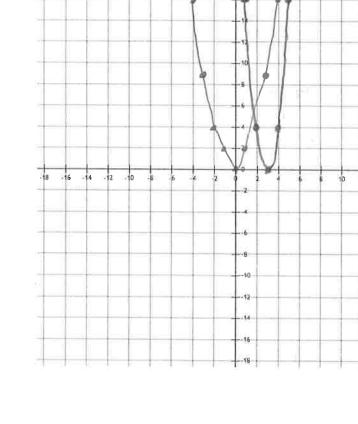


c)
$$f(x) = x^2$$
. Graph $g(x) = 4f(x - 3)$

i) vertical stretch BAFO 4 (44) Shift right 3 units (243)

$$f(x) = x^2$$

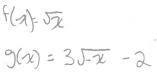
 $g(x) = 4(x-3)^2$

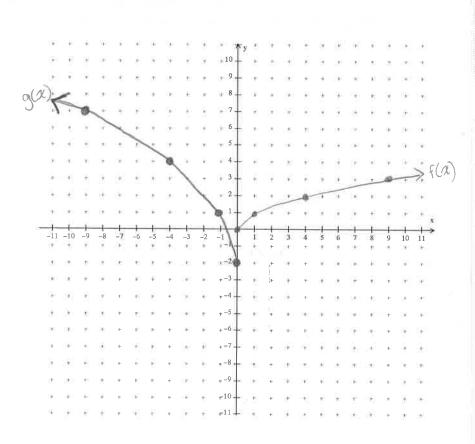


O(X)

d) $f(x) = \sqrt{x}$. Graph g(x) = 3f(-x) - 2.

i) vertical stretch RAFO 3 (3y) horroadal reflection (-7x) shift down 2 units (y-2)





e) $f(x) = \frac{1}{x}$. Graph g(x) = 2f(x-1) + 0.5i) vertical stretch both λ (2y)

shift 1 unit right (2x+1)

shift up 0.5 units (yx0.5) f(x) $(-\lambda, -0.5)$ $(-\lambda,$

8) For each function g(x):

a) $g(x) = -2(x+2)^2 + 4$

- i) determine the parent function and describe the transformations from the parent function f(x)
- ii) create a table of values of image points for the transformed function
- iii) graph the parent function and the transformed function

F(x)=
$$\chi^2$$

Transformations: vertical stretch BIFO χ^2 (χ^2)

Vertical reflection (- χ^2)

Left χ^2 units (χ^2)

up χ^2 units (χ^2)

(-3,9)

(-3,9)

(-2,4)

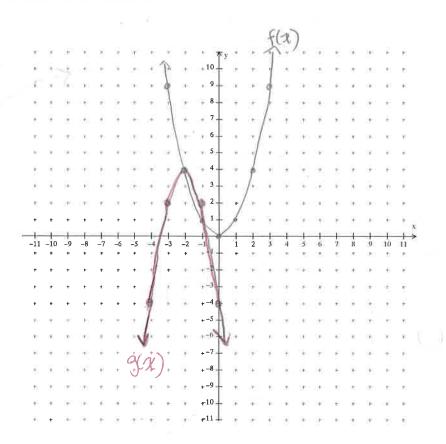
(-1,1)

(0,0)

(1,1)

(2,4)

(3,9)



b)
$$g(x) = -2\sqrt{-4(x+2)} - 3$$

1) Vertical stretch boso 2 (24)

Vertical reflection (-4)

horizontal compression boso 4 (24)

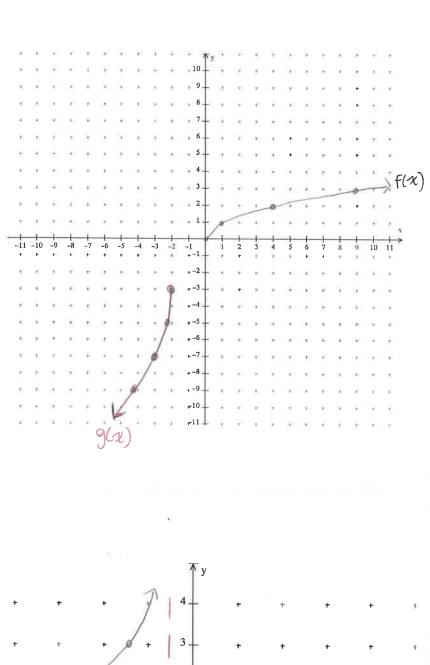
horizontal reflection (-7)

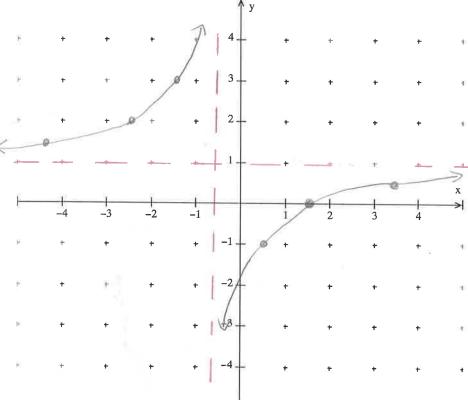
Shift left 2 (1-2)

down 3 (4-3)

$$f(x) = \frac{1}{x}$$
c) $g(x) = \frac{-1}{\frac{1}{2}(x+0.5)} + 1$ only graph $g(x)$

i) vertical reflection (-y)
horizontal stretch boso 2 (2x)
left 0.5 units (2-0.5)
up 1 unit (y+1)





9) Find the inverse, $f^{-1}(x)$, algebraically if $f(x) = -2\sqrt{x+1} - 5$

$$\chi = -2\sqrt{y+1} - 5$$

$$\frac{\chi+5}{-2} = \sqrt{y+1}$$

$$\left(\frac{\chi+5}{-2}\right)^2 = y+1$$

$$\left(\frac{\chi+5}{-2}\right)^2 - 1 = y$$

$$f^{-1}(\chi) = \left(\frac{\chi+5}{-2}\right)^2 - 1$$

10) Find the inverse, $f^{-1}(x)$, algebraically if $f(x) = \frac{1}{3}(x-4)^2 + 2$

$$\chi = \frac{1}{3}(y-4)^{2} + \lambda$$

$$\chi - \lambda = \frac{1}{3}(y-4)^{2}$$

$$3\chi - 6 = (y-4)^{2}$$

$$\pm \sqrt{3}\chi - 6 = y - 4$$

$$\pm \sqrt{3}\chi - 6 + 4 = y$$

$$F'(\chi) = \pm \sqrt{3}\chi - 6 + 4$$

$$0R$$

$$x = \frac{1}{3}(y-4)^{2} + 2$$

$$3(x-2) = (y-4)^{2}$$

$$4 \sqrt{3(x-2)} + 4 = 4$$

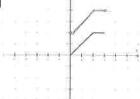
$$4 \sqrt{3(x-2)} + 4 = 4$$

$$4 \sqrt{3(x-2)} + 4 = 4$$

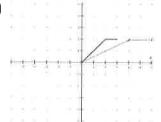
Answers

- 1) a) vertical stretch BAFO 2 b) phase shift right 3 units c) horizontal stretch BAFO 3 d) horizontal reflection in the y-axis e) shift down 3 units
- 2) a) vertical reflection in the x-axis and then shift left 3 units.
 - **b)** horizontal compression BAFO $\frac{1}{3}$ and then shift up 2 units.
 - c) vertical stretch BAFO 3 and then horizontal reflection in the y-axis.
- 3) vertical stretch BAFO 3, then shift right 2 units and down 11 units.
- **4)** vertical stretch by a factor of 2, then shift right 2 units and down 9 units.

5) a)

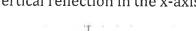


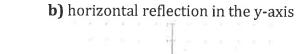
b)

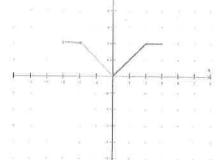


c)

6) a) vertical reflection in the x-axis







See posted solutions for 7&8

9)
$$f^{-1}(x) = \left(\frac{x+5}{-2}\right)^2 - 1$$

10)
$$f^{-1}(x) = \pm \sqrt{3(x-2)} + 4$$