Section 1: Relation vs. Function

Definitions

Relation –

Functions -

Note: All functions are relations but not all relations are functions. For a relation to be a function, there must be only one 'y' value that corresponds to a given 'x' value.

Function or Relation Investigation

1) Complete the following tables of values for each relation:

$$y = x^2$$

$$x = y^2$$

x	у
-3	
-2	
-1	
0	
1	
2	
3	

x	у
	-3
	-2
	-1
	0
	1
	2
	3

2) Graph both relations

3) Draw the vertical lines x = -2, x = -1, x = 0, x = 1, and x = 2 on the graphs above.

4) Compare how the lines drawn in step 3 intersect each of the relations. Which relation is a function? Explain why.

Section 2: Vertical Line Test

Vertical line test:

Example 1: Use the vertical line test to determine whether each relation is a function or not.

c)

d)

Section 3: Domain and Range

For any relation, the set of values of the independent variable (often the *x*-values) is called the ______ of the relation. The set of the corresponding values of the dependent variable (often the *y*-values) is called the ______ of the relation.

Note: For a function, for each given element of the domain there must be exactly one element in the range.

Domain:

Range:

General Notation

Real number: a number in the set of all integers, terminating decimals, repeating decimals, non-terminating decimals, and non repeating decimals. Represented by the symbol \mathbb{R}

Example 2: Determine the domain and range of each relation from the data given.

a) { (-3, 4), (5, -6), (-2, 7), (5, 3), (6, -8) }

Age	Number
4	8
5	12
6	5
7	22
8	14
9	9
10	11

Are each of these relations functions?

Example 3: Determine the domain and range of each relation. Graph the relation first.

a) y = 2x - 5

b)

b)
$$y = (x - 1)^2 + 3$$

c)
$$y = \sqrt{x - 1} + 3$$

d)
$$x^2 + y^2 = 36$$

e)
$$y = \frac{1}{x+3}$$

Asymptotes

Asymptote:

The function $y = \frac{1}{x+3}$ has two asymptotes:

Vertical Asymptote: Division by zero is undefined. Therefore the expression in the denominator of the function can not be zero. Therefore $x \neq -3$. This is why the vertical line x = -3 is an asymptote for this function.

Horizontal Asymptote: For the range, there can never be a situation where the result of the division is zero. Therefore the line y = 0 is a horizontal asymptote. For all functions where the denominator is a higher degree than the numerator, there will by a horizontal asymptote at y = 0.