1.1 Functions, Domain, and Range - Lesson

Section 1: Relation vs. Function

Definitions

Relation -

Functions -

Note: All functions are relations but not all relations are functions. For a relation to be a function, there must be only one ' y ' value that corresponds to a given ' x ' value.

Function or Relation Investigation

1) Complete the following tables of values for each relation:

$$
y=x^{2}
$$

$$
x=y^{2}
$$

x	\boldsymbol{y}
-3	
-2	
-1	
0	
1	
2	
3	

\boldsymbol{x}	\boldsymbol{y}
	-3
	-2
	-1
	0
	1
	2
	3

2) Graph both relations

$$
y=x^{2}
$$

$$
x=y^{2}
$$

3) Draw the vertical lines $x=-2, x=-1, x=0, x=1$, and $x=2$ on the graphs above.
4) Compare how the lines drawn in step 3 intersect each of the relations. Which relation is a function? Explain why.

Vertical line test:

Example 1: Use the vertical line test to determine whether each relation is a function or not.
a)

b)

c)

d)

Section 3: Domain and Range

For any relation, the set of values of the independent variable (often the x-values) is called the
\qquad of the relation. The set of the corresponding values of the dependent variable (often the y-values) is called the \qquad of the relation.

Note: For a function, for each given element of the domain there must be exactly one element in the range.

Domain:

Range:

General Notation

Real number: a number in the set of all integers, terminating decimals, repeating decimals, nonterminating decimals, and non repeating decimals. Represented by the symbol \mathbb{R}

Example 2: Determine the domain and range of each relation from the data given.
a) $\quad\{(-3,4),(5,-6),(-2,7),(5,3),(6,-8)\}$
b)

Age	Number
4	8
5	12
6	5
7	22
8	14
9	9
10	11

Are each of these relations functions?

Example 3: Determine the domain and range of each relation. Graph the relation first.
a) $y=2 x-5$

b) $y=(x-1)^{2}+3$

c) $y=\sqrt{x-1}+3$

d) $x^{2}+y^{2}=36$

e) $y=\frac{1}{x+3}$

Asymptotes

Asymptote:

The function $\boldsymbol{y}=\frac{\mathbf{1}}{\boldsymbol{x}+\mathbf{3}}$ has two asymptotes:
Vertical Asymptote: Division by zero is undefined. Therefore the expression in the denominator of the function can not be zero. Therefore $x \neq-3$. This is why the vertical line $x=-3$ is an asymptote for this function.

Horizontal Asymptote: For the range, there can never be a situation where the result of the division is zero. Therefore the line $y=0$ is a horizontal asymptote. For all functions where the denominator is a higher degree than the numerator, there will by a horizontal asymptote at $y=0$.

