 L	1 – Trig Review and Special Angles
N	1CR3U
J	ensen

Part 1: Trig Review

Your main takeaway from grade 10 trigonometry should have been:

If we know a right t	riangle has an angle of $ heta$, all other right triangles with an angle of $ heta$ are	and
therefore have	ratios of corresponding sides.	

There are three primary trigonometric ratios for right angled triangles. _____, ____, and ______.

Example 1: Find the indicated missing side or angle of each triangle

Part 2: Special Angles

There are 2 special triangles:

i) isosceles: 45° - 45° - 90° ii) half equilateral: 30° - 60° - 90°

All sized right triangles with these angles are SIMILAR and therefore will have the same ratios of corresponding sides. Therefore, we can use these 2 special triangles to get ______ values for trig ratios involving a 30°, 45°, or 60° reference angle AND we don't need a calculator!

Example 2: Use special triangles to find the EXACT values of all sides and angles

Example 3: Determine the exact value of...

a) $(\sin 45^\circ)(\cos 45^\circ) + (\sin 30^\circ)(\sin 60^\circ)$

b) $\frac{\sin^2 30^\circ}{1-\cos 30^\circ}$

Part 3: Rationalizing the Denominator

Fractions should be simplified so that the denominator contains only rational numbers.

Example 4: Rationalize the denominator for each of the following expressions

a)
$$\frac{1}{\sqrt{2}}$$
 b) $\frac{3}{1+\sqrt{5}}$