L1 - Trig Review and Special Angles

MCR3U
Jensen

Part 1: Trig Review

Your main takeaway from grade 10 trigonometry should have been:

If we know a right triangle has an angle of θ, all other right triangles with an angle of θ are \qquad and therefore have \qquad ratios of corresponding sides.

There are three primary trigonometric ratios for right angled triangles. \qquad , \qquad and \qquad .

$\sin \theta=$
$\cos \theta=$
$\tan \theta=$

Acronym: SOHCAHTOA S $\frac{O}{H} \bigcirc \frac{A}{H}$ T $\frac{O}{A}$

Example 1: Find the indicated missing side or angle of each triangle
a)

b)

Part 2: Special Angles

There are 2 special triangles:
i) isosceles: $45^{\circ}-45^{\circ}-90^{\circ}$
ii) half equilateral: $30^{\circ}-60^{\circ}-90^{\circ}$
i)

$\sin 45^{\circ}=$
$\cos 45^{\circ}=$
$\tan 45^{\circ}=$
ii)

All sized right triangles with these angles are SIMILAR and therefore will have the same ratios of corresponding sides. Therefore, we can use these 2 special triangles to get \qquad values for trig ratios involving a $30^{\circ}, 45^{\circ}$, or 60° reference angle AND we don't need a calculator!

Example 2: Use special triangles to find the EXACT values of all sides and angles
a)

4 cm
b)

Example 3: Determine the exact value of...
a) $\left(\sin 45^{\circ}\right)\left(\cos 45^{\circ}\right)+\left(\sin 30^{\circ}\right)\left(\sin 60^{\circ}\right)$
b) $\frac{\sin ^{2} 30^{\circ}}{1-\cos 30^{\circ}}$

Part 3: Rationalizing the Denominator

Fractions should be simplified so that the denominator contains only rational numbers.
Example 4: Rationalize the denominator for each of the following expressions
a) $\frac{1}{\sqrt{2}}$
b) $\frac{3}{1+\sqrt{5}}$

