1.1 Functions, Domain, and Range - Lesson

MCR3U Jensen

Section 1: Relation vs. Function

Definitions

Relation – an identified pattern between two variables that may be represented as a table of values, a graph, or an equation.

Functions – a relation in which each of value of the independent variable (x), corresponds to exactly one value of the dependent variable (y)

Note: All functions are relations but not all relations are functions. For a relation to be a function, there must be only one 'y' value that corresponds to a given 'x' value.

Function or Relation Investigation

1) Complete the following tables of values for each relation:

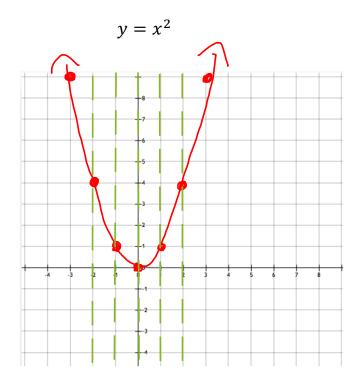
$$y = x^2$$

x	у
-3	9
-2	4
-1	l
0	Q
1	1
2	4
3	9

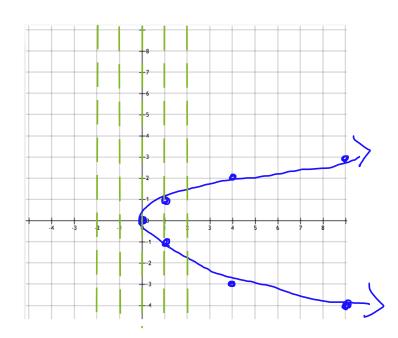
$$x = y^2$$

x	у
9	-3
4	-2
1	-1
0	0
	1
4	2
9	3

2) Graph both relations



$$x = y^2$$



- **3)** Draw the vertical lines x = -2, x = -1, x = 0, x = 1, and x = 2 on the graphs above.
- **4)** Compare how the lines drawn in step 3 intersect each of the relations. Which relation is a function? Explain why.

For $y = x^2$, none of the vertical lines drawn intersect the graph at more than one point. That means that for each value of x, there is only 1 corresponding value of y. This means it is a function.

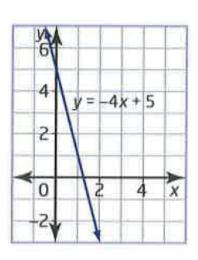
For $x = y^2$, some of the vertical lines drawn intersect the graph at more than one point. That means that some x-values correspond to more than one y-value. This means it is NOT a function.

Section 2: Vertical Line Test

Vertical line test: a method for determining if a relation is a function or not. If every possible vertical line intersects the graph of the relation at only one point, then the relation is a function.

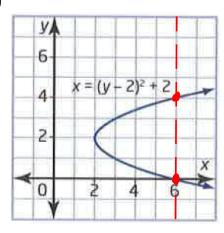
Example 1: Use the vertical line test to determine whether each relation is a function or not.

a)



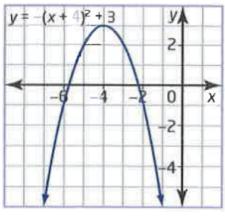
Function

b)



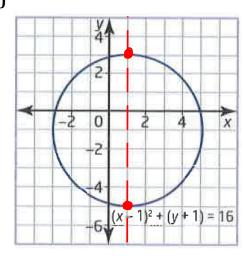
Not a function When x = 6, y = 0 and 4

c)



Function

d)



Not a function When x = 1, y = -5 and 3

Section 3: Domain and Range

For any relation, the set of values of the independent variable (often the *x*-values) is called the <u>domain</u> of the relation. The set of the corresponding values of the dependent variable (often the *y*-values) is called the <u>range</u> of the relation.

Note: For a function, for each given element of the domain there must be exactly one element in the range.

Domain: values *x* may take

Range: values y may take

General Notation

Real number: a number in the set of all integers, terminating decimals, repeating decimals, non-terminating decimals, and non repeating decimals. Represented by the symbol \mathbb{R}

Example 2: Determine the domain and range of each relation from the data given.

a)
$$\{(-3, 4), (5, -6), (-2, 7), (5, 3), (6, -8)\}$$

$$D: \{x = -3, -a, 5, 6\}$$

b)

Age	Number
4	8
5	12
6	5
7	22
8	14
9	9
10	11

D:
$$\{ x = 4,5,6,7,8,9,10 \}$$

 $\{ : \{ y = 5,8,9,11,12,14,22 \}$

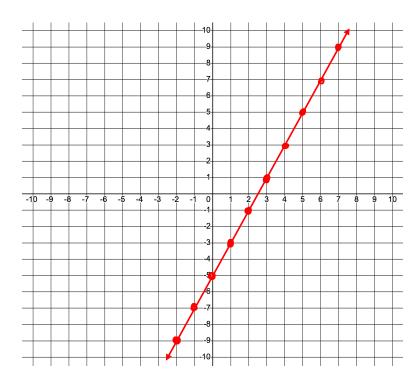
Are each of these relations functions?

part a) is NOT a function. There are multiple y-values that correspond to an x-value of 5

part b) is a function. Each value for x has exactly one value for y.

Example 3: Determine the domain and range of each relation. Graph the relation first.

a)
$$y = 2x - 5$$



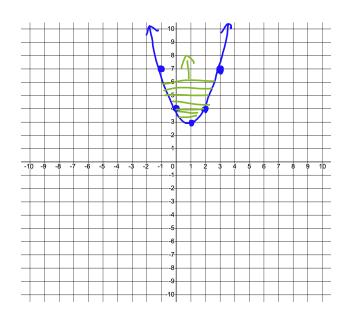
b)
$$y = (x - 1)^2 + 3$$

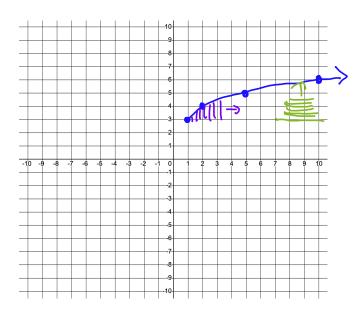
quadratic function

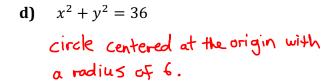
c)
$$y = \sqrt{x-1} + 3$$

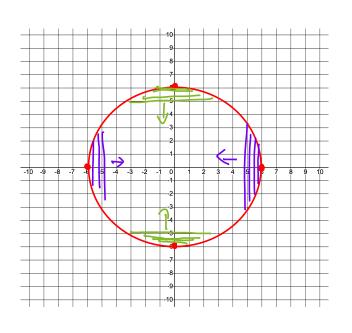
radical function

D: { XER | 2 > 1 }





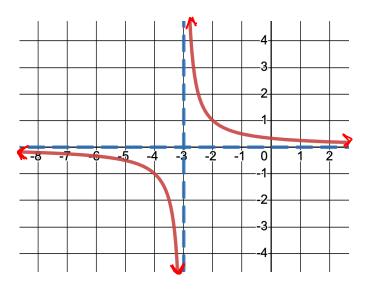




e)
$$y = \frac{1}{x+3}$$

rational function

horizontal asymptote at y=0vertical asymptote at x=-3



Asymptotes

Asymptote:

The function $y = \frac{1}{x+3}$ has two asymptotes:

Vertical Asymptote: Division by zero is undefined. Therefore the expression in the denominator of the function can not be zero. Therefore $x \ne -3$. This is why the vertical line x = -3 is an asymptote for this function.

Horizontal Asymptote: For the range, there can never be a situation where the result of the division is zero. Therefore the line y = 0 is a horizontal asymptote. For all functions where the denominator is a higher degree than the numerator, there will by a horizontal asymptote at y = 0.