Intro to Rational Expressions

Fractions and Exponents Review

Fractions Review

Adding and Subtracting Fractions

Always find a common denominator when adding or subtracting fractions!
a) $\frac{1}{2 x 4}^{\times 4} \times \frac{1}{8}$
b) $\frac{\mathbf{2} \boldsymbol{x}^{\times 2}}{\mathbf{3 y}^{\times 2}}-{\frac{\boldsymbol{y}}{}{ }^{\times 3 y}}^{x 3 y}$
commandenom= $3 y(2)$
$=\frac{4}{8}+\frac{1}{8}$
$=\frac{5}{8}$ (keep denominator)
$=\frac{4 x}{6 y}-\frac{3 y^{2}}{6 y}$
$=\frac{4 x-3 y^{2}}{6 y}$

Multiplying and Dividing Fractions

You do NOT need a common
denominator when multiplying
or dividing fractions!
a) $3 \quad 4$
$\overline{2} \cdot \overline{5}$
$=\frac{(3)(4)}{(2)(5)}$
$=\frac{12}{10}$
$=\frac{6}{5}$
b) $\frac{2}{3} \div \frac{4}{3}$ Flip second
$\overline{3} \div \overline{3}$ *fraction and * multiply

Rule: We can NEVER have a fraction with a denominator of 0 . Why?
eg. $\frac{6}{2}=3$
$\left\{\frac{6}{0}=\right.$?
why? because $2 \times 3=6$
$\{$ This means $0 x ?=6$
Rule: Cross multiplication of fractions only happens when...... There is an = sign between two fractions.

$$
\text { eg. } \begin{aligned}
\frac{2}{3} & =\frac{x}{5} \\
5(2) & =3 x \\
10 & =3 x \\
x & =\frac{10}{3}
\end{aligned}
$$

Rule: We can cancel out ONLY when multiplying fractions

You can cancel factors.

$$
\left.\begin{array}{l}
\text { eg. } \frac{x(x+1)}{x}=x+1 \\
\text { eg. } \frac{3 k b x(x+3)}{24 x t}=\frac{3 x+9}{2}
\end{array}\right] \begin{aligned}
& \text { These are } \\
& \text { examples of } \\
& \text { when cancelling } \\
& \text { is allowed. }
\end{aligned}
$$

Rule: We can NOT cancel out when adding or subtracting fractions
egg. $\frac{x+8}{x}$ NO! Don't do this!
egg. $2 x+3$ No cancelling!

Name	Rule	Examples
Adding and Subtracting Monomials	COMBINE LIKE TERMS! (do not change common variables and exponents)	$3 x^{2} y+2 x^{2} y=$ $5 x^{2} y$
Product Rule	$x^{a} \cdot x^{b}=x^{a+b}$	$\left(-2 x^{2} y\right)\left(3 x^{3} y^{2}\right)=$ $-6 x^{5} y^{3}$
Quotient Rule	$\frac{x^{a}}{x^{b}}=x^{9-b}$	$\frac{28 x^{5}}{42 x}=\frac{2 x^{4}}{3}$
Power of a Power Rule	$\left(x^{a}\right)^{b}=x^{a \times b}$	$\left(-2 x^{3}\right)^{2}=$ $4 x^{6}$
Negative Exponent Rule	$x^{-a}=\frac{1}{x^{a}}$	$\frac{4 x^{2}}{8 x^{5}}=\frac{1}{2 x^{3}}$
Exponent of Zero	$x^{0}=1$	$87^{0}=$

Simplify the following rational expressions using exponent laws

a)

$$
\begin{aligned}
\frac{12 k^{2} m^{8}}{4 k^{5} m^{5}} & =3 k^{-3} m^{3} \\
& =\frac{3 m^{3}}{k^{3}}
\end{aligned}
$$

b)

$$
\begin{aligned}
\frac{5 c^{3} d \cdot 4 c^{2} d^{2}}{\left(2 c^{2} d\right)^{2}} & =\frac{20 c^{5} d^{3}}{4 c^{4} d^{2}} \\
& =5 c d
\end{aligned}
$$

c)

$$
\begin{aligned}
\frac{(3 x y)^{3}}{9 x^{4} y^{4}} & =\frac{27 x^{3} y^{3}}{9 x^{4} y^{4}} \\
& =3 x^{-1} y^{-1} \\
& =\frac{3}{x y}
\end{aligned}
$$

d)

$$
\begin{aligned}
\frac{\left(2 z^{3}\right)^{-2}}{w^{5} z^{2}} & =\frac{2^{-2} z^{-6}}{w^{5} z^{2}} \\
& =\frac{1}{2^{2} w^{5} z^{2} z^{6}} \\
& =\frac{1}{4 w^{5} z^{8}}
\end{aligned}
$$

e)

$$
\begin{aligned}
\frac{\left(x^{-4}\right)^{5} x^{3}}{3 x^{-1}} & =\frac{x^{-20} x^{3}}{3 x^{-1}} \\
& =\frac{x^{-17}}{3 x^{-1}} \\
& =\frac{1}{3 x^{-1} x^{17}} \\
& =\frac{1}{3 x^{16}}
\end{aligned}
$$

Combining fractions and exponents:

$$
\text { ex. } \begin{aligned}
& \frac{3 x^{z^{\prime \prime}}}{2 x^{2}}+\frac{4 y^{43}}{3 y} \\
= & \frac{3 x^{\times 3}}{2 \times 3}+\frac{4 y^{3 \times 2}}{3 \times 2} \\
= & \frac{9 x}{6}+\frac{8 y^{3}}{6} \\
= & \frac{9 x+8 y^{3}}{6}
\end{aligned}
$$

COMPLETE WORKSHEET

