Intro to Rational Expressions

Fractions and Exponents Review

Fractions Review

Adding and Subtracting Fractions

Always find a common denominator when adding or subtracting fractions!

a)
$$\frac{1}{2}$$
 $\frac{1}{8}$ $\frac{4}{8}$ $\frac{4}{8}$ $\frac{4}{8}$ $\frac{5}{8}$ (keep derainder)

b)
$$\frac{2x^{*2}}{3y^{*2}} - \frac{y^{*3}y}{2x^{3}y}$$

$$= \frac{4x}{6y} - \frac{3y^{2}}{6y}$$

$$= \frac{4x-3y^{2}}{6y}$$

Multiplying and Dividing Fractions

You do NOT need a common denominator when multiplying or dividing fractions!

a)
$$\frac{3}{2} \cdot \frac{4}{5}$$

$$= \frac{12}{10}$$

b)
$$\frac{2}{3} \div \frac{4}{3}$$
 # Flip second # multiply

$$=\frac{2}{3}\times\frac{3}{4}$$

$$\approx \frac{6}{12}$$

Rule: We can NEVER have a fraction with a denominator of 0. Why?

$$\frac{6}{2} = 3$$

eg.
$$\frac{6}{2} = 3$$

why? because $2x3 = 6$

This means $0x^2 = 6$

Rule: Cross multiplication of fractions only happens when There is an = sign between two fractions

eg.
$$\frac{2}{3} = \frac{x}{5}$$

Rule: We can cancel out ONLY when multiplying fractions

You can cancel factors.

eg.
$$\frac{k(x+1)}{2} = x+1$$

These are examples of when cancelling is allowed.

eg. $\frac{3kk(x+3)}{2kk} = \frac{3x+9}{2}$

Rule: We can NOT cancel out when adding or subtracting fractions

Name	Rule	Examples
Adding and Subtracting Monomials	COMBINE LIKE TERMS! (do not change common variables and exponents)	$3x^2y + 2x^2y =$ $5x^2y$
Product Rule	$x^a \cdot x^b = \mathcal{X}^{a+b}$	$(-2x^2y)(3x^3y^2) =$
Quotient Rule	$\frac{x^a}{x^b} = \mathbf{z}^{a-b}$	$\frac{28x^5}{42x} = \frac{2x^4}{3}$
Power of a Power Rule	$(x^a)^b = x^a b$	$(-2x^3)^2 = $ $4x^6$
Negative Exponent Rule	$x^{-a} = \frac{1}{\chi^a}$	$\frac{4x^2}{8x^5} = $
Exponent of Zero	x ⁰ = (87° =

Simplify the following rational expressions using exponent laws

a)
$$\frac{12k^2m^8}{4k^5m^5} = 3k^{-3}m^3$$
$$= \frac{3m^3}{k^3}$$

b)
$$\frac{5c^3d \cdot 4c^2d^2}{(2c^2d)^2} = \frac{20c^3d^3}{4c^4d^2}$$

$$= 5cd$$

$$\frac{(3xy)^3}{9x^4y^4} = \frac{27x^3y^3}{9x^4y^4}$$

$$= 3x^{-1}y^{-1}$$

$$= \frac{3}{xy}$$

$$\frac{(2z^{3})^{-2}}{w^{5}z^{2}} = \frac{2^{-3}z^{-6}}{w^{5}z^{2}}$$

$$= \frac{1}{2^{2}w^{5}z^{3}z^{6}}$$

$$= \frac{1}{4w^{5}z^{8}}$$

$$\frac{(x^{-4})^5 x^3}{3x^{-1}} = \underbrace{x^{-30} x^3}_{3x^{-1}}$$

$$= \underbrace{x^{-17}}_{3x^{-1}}$$

$$= \underbrace{\frac{1}{3x^{16}}}$$

Combining fractions and exponents:

ex.
$$\frac{3x^{31}}{2x^{2}} + \frac{4y^{43}}{3y}$$

$$= \frac{3x^{33}}{2^{33}} + \frac{4y^{3}}{3^{3}}$$

$$= \frac{9x}{6} + \frac{8y^{3}}{6}$$

$$= \frac{9x + 8y^{3}}{6}$$

COMPLETE WORKSHEET