3.3 Rational Exponents - Lesson

MCR3U Jensen

Intro to Rational Exponents (fraction exponents):

$$\sqrt{\chi}$$

Powers with a rational exponent of the form $\frac{1}{n}$

A power involving a rational exponent with numerator 1 and denominator n can be interpreted as the nth root of the base:

Example 1: Evaluate each of the following

a)
$$8^{\frac{1}{3}}$$

b)
$$\sqrt[5]{-32}$$

c)
$$-16^{\frac{1}{4}}$$

d)
$$\sqrt[4]{\frac{16}{81}}$$

e)
$$(-27)^{-\frac{1}{3}}$$

Powers with a rational exponent of the form $\frac{m}{n}$

You can evaluate a power involving a rational exponent with numerator m and denominator n by taking the nth root of the base raised to the exponent m:

Example 2: Simplify each of the following powers

a)
$$\sqrt[5]{y^2}$$

b)
$$\sqrt[3]{x}$$

c)
$$\sqrt{a^{-3}b^{\frac{4}{3}}}$$

d)
$$\sqrt[4]{x^3y^2}$$

$$e) \frac{\sqrt[3]{x^2y} \cdot y^2}{x^3}$$

Example 3: Evaluate each of the following

a)
$$8^{\frac{2}{3}}$$

b)
$$81^{\frac{5}{4}}$$

c)
$$\left(\frac{49}{81}\right)^{-\frac{3}{2}}$$

Apply Exponent Rules

Example 4: Simplify and express answer using only positive exponents

$$\mathbf{a})\frac{\left(x^{\frac{2}{3}}\right)\left(x^{\frac{2}{3}}\right)}{\left(x^{\frac{1}{3}}\right)}$$

b)
$$\left(y^{\frac{1}{4}}\right)^2 \times \left(y^{-\frac{1}{3}}\right)^2$$

c)
$$\left(5x^{\frac{1}{2}}\right)^2 \times 4x^{-\frac{1}{2}}$$

d)
$$\frac{(m^{-2})^3 \sqrt{m^4}}{m \sqrt{pq^{-3}}}$$

e)
$$\frac{(x^2)^{-4} \cdot \sqrt[5]{y^3}}{y\sqrt{x^{-2}y}}$$