L2 - Trig Ratios for Angles Greater than 90°

MCR3U
Jensen

Part 1: Reference Angles

between the initial arm and the terminal arm of an angle in standard position. It's value is between 0° and 360°. : The acute angle between the terminal arm of an angle in standard position and the closest x-axis when the terminal arm lies in quadrant 2, 3, or 4. The reference angle helps us determine the exact trig ratios when we are given obtuse angles.

Example 1: Find the reference angle for each of the following principal angles
a) 250°
b) 120°
c) 300°

Part 2: Evaluating Trig Ratios for Any Angle

For any point $P(x, y)$ in the Cartesian plane, the trigonometric ratios for angles in standard position can be expressed in terms of x, y, and r.

$$
\begin{aligned}
& \sin \theta= \\
& \cos \theta= \\
& \tan \theta=
\end{aligned}
$$

The CAST rule is an easy way to remember which primary trig ratios are positive in which quadrant. Since r is always positive, the sign of each primary ratio depends on the signs of the coordinates of the point (x, y).

In Q1, \qquad ratios are positive because both x and y are positive.

In Q2, only \qquad is positive, since x is negative and y is positive.

In Q3, only \qquad is positive, since both x and y are negative.

In Q4, only \qquad is positive, since x is positive but y is negative.

Example 2: Find the EXACT value of each of the following
a) $\sin 45^{\circ}$

b) $\sin 210^{\circ}$
c) $\cos 240^{\circ}$

d) $\tan 315^{\circ}$

Example 3: Each point lies on the terminal arm of angle θ in standard position. Determine each of the primary trig ratios for angle θ.
a) $(5,-12)$

b) $(-8,3)$

Part 3: Unit Circle

The unit circle, a circle with a radius of 1 unit, is very useful since the x and y coordinates of where the terminal intersects it tell us the Cosine and Sine ratios respectively.

http://www.mathsisfun.com/geometry/unit-circle.html

Example 4: Find the EXACT value of each of the following
a) $\sin 270^{\circ}$
b) $\cos 360^{\circ}$
b)

Part 4: Negative and Co-terminal Angles

Co-terminal angles are angles in standard position that have the \qquad .

Starting at 30° and rotating 360° counter clockwise will bring you back to the same terminal arm.

$$
30^{\circ}+360^{\circ}=390^{\circ}
$$

Therefore, 30° and 390° are co-terminal.

A negative angle is an angle measured \qquad from the positive x-axis.

You can find an equivalent (co-terminal) positive angle by adding 360° to the negative angle.
-210° and 150° have the same terminal arm (coterminal) and therefore have the same trigonometric ratios.

Example 5: Find three co-terminal angles of 60°

Example 6: Find the EXACT value of each of the following
a) $\sin \left(-45^{\circ}\right)$

b) $\cos \left(-60^{\circ}\right)$

