L2-1.2 Functions and Function Notation

 MCR3UJensen

Part 1: Domain \& Range Review

a) State the domain and range of the relation shown in the following graph:

$$
\begin{aligned}
& D:\{x \in \mathbb{R} \mid-7 \leq x \leq 7\} \\
& R_{i}:\{|\varepsilon \mathbb{R}|-2.5 \leq y \leq 3\}
\end{aligned}
$$

b) Is this a function?

No, it does NOT pass the vertical line test.
c) What determines if a relation is a function or not?

For each value of x, there can only be one corresponding value of y.
d) How does the vertical line test help us determine if a relation is a function?

If any vertical line touches the graph of the relation in more than one spot, it is NOT a function.
e) What is domain?

The values x may take.
f) What is range?

The value y may take.

What does a function do?

Takes an input (x), performs operations on it and then gives an output (y).

What does function notation look like?
read as 'foo x ' or 'fat x '
replaces ' y ' $f(x)=$ some operations applied to x
Example 1: For each of the following functions, determine $f(2), f(-5)$, and $f(1 / 2)$
a) $\quad f(x)=2 x-4$

$$
\begin{array}{lcc}
f(2)=2(2)-4 & f(-5)=2(-5)-4 & f\left(\frac{1}{2}\right)=2\left(\frac{1}{2}\right)-4 \\
f(2)=0 & f(-5)=-14 & f\left(\frac{1}{2}\right)=-3 \\
(2,0) & (-5,-14) & \left(\frac{1}{2},-3\right)
\end{array}
$$

b) $f(x)=3 x^{2}-x+7$

$$
\begin{array}{lll}
f(2)=3(2)^{2}-2+7 & f(-5)=3(-5)^{2}-(-5)+7 & f\left(\frac{1}{2}\right)=3\left(\frac{1}{2}\right)^{2}-\frac{1}{2}+7 \\
f(2)=17 & f(-5)=75+5+7 & f\left(\frac{1}{2}\right)=\frac{3}{4}-\frac{2}{4}+\frac{28}{4} \\
(2,17) & f(-5)=87 & f\left(\frac{1}{2}\right)=\frac{29}{4} \\
& (-5,87) & \left(\frac{1}{2}, \frac{29}{4}\right)
\end{array}
$$

c) $\quad f(x)=87$

$$
\begin{array}{lll}
f(2)=87 & f(-5)=87 & f\left(\frac{1}{2}\right)=87 \\
(2,87) & (-5,87) & \left(\frac{1}{2}, 87\right)
\end{array}
$$

d) $f(x)=\frac{2 x}{x^{2}-3}$

$$
=4
$$

$$
(2,4)
$$

$$
\begin{aligned}
& f\left(\frac{1}{2}\right)=\frac{2\left(\frac{1}{2}\right)}{\left(\frac{1}{2}\right)^{2}-3} \\
&=\frac{1}{\frac{1}{4}-\frac{12}{4}} \\
&=\frac{1}{\left(-\frac{11}{4}\right)} \\
&=-\frac{4}{11} \\
&\left.\left(\frac{1}{2}\right)-\frac{4}{11}\right)
\end{aligned}
$$

$$
\begin{aligned}
& f(-5)=\frac{2(-5)}{(-5)^{2}-3} \\
&=\frac{-10}{22} \\
&=\frac{-5}{11} \\
&\left(-5,-\frac{5}{11}\right)
\end{aligned}
$$

Part 3: Applications of Function Notation
Example 3: For the function $h(t)=-3(t+1)^{2}+5$
vertex form: $f(x)=a(x-h)^{2}+k$
i) Graph it and find the domain and range
opens down $(a<0)$
vertex at $\left(-1, \frac{k}{5}\right)$

t	$h(t)$
-3	-7
-2	2
-1	5
0	2
1	-7

ii) Find $h(-7)$

$$
\begin{aligned}
h(-7) & =-3[(-7)+1]^{2}+5 \\
& =-3(-6)^{2}+5 \\
& =-3(36)+5 \\
& =-103
\end{aligned}
$$

Example 4: The temperature of the water at the surface of a lake is 22 degrees Celsius. As Gen scuba dives to the depths of the lake, he finds that the temperature decreases by 1.5 degrees for every 8 meters he descends.
a) Model the water temperature at any depth using function notation.

$$
\begin{aligned}
& m=\frac{\Delta T}{\Delta d}=\frac{-1.5}{8}=\frac{-3}{16} \quad T(d)=\frac{-3}{16} d+22 \\
& b=22
\end{aligned}
$$

b) What is the water temperature at a depth of 40 meters?

$$
\begin{aligned}
T(40) & =\frac{-3}{16}(40)+22 \\
& =14.5^{\circ} \mathrm{C}
\end{aligned}
$$

Notice it is a constant rate of change making it a linear function of the form

$$
y=m x+b
$$

c) At the bottom of the lake the temperature is 5.5 degrees Celsius. How deep is the lake?

$$
\begin{aligned}
5.5 & =\frac{-3}{16} d+22 \\
(16)-16.5 & =\frac{-3}{16} d(16) \\
-264 & =-3 d \\
d & =88 \text { meters deep }
\end{aligned}
$$

