L2 - 1.	2 Functions and Function Notation	
MCR3U		
Iensen		

Part 1: Domain & Range Review

a) State the domain and range of the relation shown in the following graph:

b) Is this a function?

No, it does NOT pass the vertical line test.

c) What determines if a relation is a function or not?

For each value of *x*, there can only be one corresponding value of *y*.

d) How does the vertical line test help us determine if a relation is a function?

If any vertical line touches the graph of the relation in more than one spot, it is NOT a function.

e) What is domain?

The values x may take.

f) What is range?

The value y may take.

Part 2: Find Values Using Function Notation

What does a function do?

Takes an input (x), performs operations on it and then gives an output (y).

What does function notation look like?

read as for X or (Fat X) F(x) = some operations opplied to xreplaces 'y'

Example 1: For each of the following functions, determine f(2), f(-5), and f(1/2)

- f(x) = 2x 4a)
 - $f(\frac{1}{2}) = 2(\frac{1}{2}) 4$ F(-5) = 2(-5) - 4f(2) = 2(2) - 4F(-5) = -14F(2) = 0 $f(\frac{1}{2}) = -3$ (-5, -14) (2,0) $(\frac{1}{2}, -3)$

b)
$$f(x) = 3x^2 - x + 7$$

 $f(2) = 3(2)^2 - 2 + 7$
 $f(3) = 17$
 $(2, 17)$
 $f(x) = 3(2)^2 - 2 + 7$
 $f(-5) = 3(-5)^2 - (-5) + 7$
 $f(-5) = 3(2)^2 - 2(-5) + 7$
 $f(-5) = 3(-5) +$

f(x) = 87c)

L)

$$f(a) = 87$$
 $f(-5) = 87$ $f(\frac{1}{2}) = 87$ $(a, 87)$ $(-5, 87)$ $(\frac{1}{2}, 87)$

Part 3: Applications of Function Notation

Example 3: For the function $h(t) = -3(t+1)^2 + 5$

i) Graph it and find the domain and range

vertex Form: $f(x) = a(x-h)^{a} + K$

ii) Find h(-7)

$$h(-7) = -3[(-7)+1]^{2}+5$$

= -3(-6)^{2}+5
= -3(36)+5
= -103

Example 4: The temperature of the water at the surface of a lake is 22 degrees Celsius. As Geno scuba dives to the depths of the lake, he finds that the temperature decreases by 1.5 degrees for every 8 meters he descends.

a) Model the water temperature at any depth using function notation.

Notice it is a constant rate of change making it a linear function of the form y = mx + b

b) What is the water temperature at a depth of 40 meters?

$$T(40) = -\frac{3}{16}(40) + 22$$

= 14.5°C

c) At the bottom of the lake the temperature is 5.5 degrees Celsius. How deep is the lake?

$$5.5 = -\frac{3}{16}d + 22$$
(16) -16.5 = $-\frac{3}{16}d$ (16)
- 264 = - 3d
 $d = 88$ meters deep