Intro to Rational exponents (Fractions):

> Powers with a rational exponent of the form $\frac{1}{n}$
> n

A power involving a rational exponent with numerator 1 and denominator n can be interpreted as the nth root of the base:

$$
b^{\frac{1}{n}}=\sqrt[n]{b}
$$

Powers with a rational exponent of the form $\frac{1}{n}$ n

Example 1: Evaluate each of the following
a) $8^{\frac{1}{3}}$
b)
c) $-16^{\frac{1}{4}}$
$=2$
$=(-32)^{\frac{1}{5}}=-2$
$=-2$
d)
e) $(-27)^{-\frac{1}{3}}$
$=\frac{1}{(-27)^{1 / 3}}$
$=\left(\frac{16}{81}\right)^{\frac{1}{4}}$
$=\frac{(16)^{\frac{1}{4}}}{(81)^{\frac{1}{4}}}$
$=\frac{1}{-3}$
$=-\frac{1}{3}$
$=\frac{2}{3}$

Powers with a rational exponent of the form

You can evaluate a power involving a rational exponent with numerator m and denominator n by taking the nth root of the base raised to the exponent m :

$$
b^{\frac{m}{n}}=(\sqrt[n]{b})^{m}=\sqrt[n]{b^{m}}
$$

Powers with a rational exponent of the form $\frac{m}{n}$

Example 2: Simplify each of the following powers
a)

$$
\begin{array}{ll}
\sqrt[5]{y^{2}} & \sqrt[3]{x} \\
= & y^{\frac{2}{5}}
\end{array}
$$

b)

$$
\text { c) } \begin{aligned}
& \sqrt{a^{-3} b^{\frac{4}{3}}} \\
= & \left(a^{-3} b^{4 / 3}\right)^{1 / 2} \\
= & a^{-3 / 2} b^{1 / 6} \\
= & \frac{b^{2 / 3}}{a^{3 / 2}}
\end{aligned}
$$

d)

$$
\begin{aligned}
& \sqrt[4]{x^{3} y^{2}} \\
& =\left(x^{3} y^{2}\right)^{1 / 4} \\
& =x^{3 / 4} y^{2 / 4} \\
& =x^{3 / 4} y^{1 / 2}
\end{aligned}
$$

e)

$$
\begin{aligned}
\frac{\sqrt[3]{x^{2} y} y^{2}}{x^{3}} & =\frac{\left(x^{2} y\right)^{1 / 3} y^{2}}{x^{3}} \\
& =\frac{x^{2 / 3} y^{1 / 3} y^{6 / 3}}{x^{4 / 3}} \\
& =x^{-7 / 3} y^{7 / 3} \\
& =\frac{y^{7 / 3}}{x^{7 / 3}}
\end{aligned}
$$

Example 3: Evaluate each of the following
a)

$=\left(8^{1 / 3}\right)^{2}$
$=(2)^{2}$
$=4$

c)

$$
\begin{aligned}
& \left(\frac{49}{81}\right)^{-\frac{3}{2}} \\
= & \left(\frac{81}{49}\right)^{3 / 2} \\
= & \frac{(81)^{3 / 2}}{(49)^{3 / 2}} \\
= & \frac{729}{343}
\end{aligned}
$$

b) $81^{\frac{5}{4}}$
$=\left(81^{1 / 4}\right)^{5}$
$=(3)^{5}$
$=243$

> If you have a power with a negative exponent and a rational base, just flip the base and make the exponent positive.

Apply Exponent Rules
Example 4: Simplify and express answer using only positive exponents
a)

$$
\begin{aligned}
\frac{\left(x^{\frac{2}{3}}\right)\left(x^{\frac{2}{3}}\right)}{\left(x^{\frac{1}{3}}\right)} & =\frac{x^{4 / 3}}{x^{1 / 3}} \\
& =x^{3 / 3} \\
& =x
\end{aligned}
$$

b)

$$
\begin{aligned}
& \left(y^{\frac{1}{4}}\right)^{2} \times\left(y^{-\frac{1}{3}}\right)^{2} \\
= & y^{1 / 2} \times y^{-2 / 3} \\
= & y^{3 / 6} \times y^{-4 / 6} \\
= & y^{-1 / 6} \\
= & \frac{1}{y^{1 / 6}}
\end{aligned}
$$

c)

$$
\begin{aligned}
& \left(5 x^{\frac{1}{2}}\right)^{2} \times 4 x^{-\frac{1}{2}} \\
= & 25 x \cdot 4 x^{-1 / 2} \\
= & 25 x^{2 / 2} \cdot 4 x^{-1 / 2} \\
= & 100 x^{1 / 2}
\end{aligned}
$$

d)

$$
\begin{aligned}
\frac{\left(m^{-2}\right)^{3} \sqrt{m^{4}}}{m \sqrt{p q^{-3}}} & =\frac{m^{-6} \cdot m^{4 / 2}}{m p^{1 / 2} q^{-3 / 2}} \\
& =\frac{m^{-6} \cdot m^{2}}{m p^{1 / 2} q^{-3 / 2}} \\
& =\frac{m^{-4}}{m p^{1 / 2} q^{-3 / 2}} \\
& =\frac{m^{-5}}{p^{1 / 2} q^{-3 / 2}} \\
& =\frac{q^{3 / 2}}{m^{5} p^{1 / 2}}
\end{aligned}
$$

e)

$$
\begin{aligned}
\frac{\left(x^{2}\right)^{-4} \sqrt[5]{y^{3}}}{y \sqrt{x^{-2} y}} & =\frac{x^{-8} y^{3 / 5}}{y x^{-1} y^{1 / 2}} \\
& =\frac{x^{-7} y^{3 / 5}}{y^{3 / 2}} \\
& =\frac{x^{-7} y^{6 / 10}}{y^{15 / 10}} \\
& =x^{-7} y^{-9 / 10} \\
& =\frac{1}{x^{7} y^{9 / 10}}
\end{aligned}
$$

Complete Worksheet

