2.1/2.2 Multiplying and Dividing Rational Expressions - Lesson

MCR3U Jensen

What is a Rational Expression?

Rational Expression:

Example of a graph of a rational expression:

The open circle is used to represent a hole in the graph. This corresponds to any restrictions on the variable (denominator can't be 0).

Stating Restrictions

Note: rational expressions must be checked for restrictions by determining where the denominator is equal to ______. These restrictions must be stated when the expression is simplified.

Example 1: State the restrictions for the following rational expressions

a)
$$\frac{x+2}{x-2}$$

b)
$$\frac{x+2}{(x-3)(x+4)}$$

c)
$$\frac{5}{x(x+3)}$$

d) $\frac{x+1}{x^2+3x+2}$

e)
$$\frac{x^2-9}{x^2+7x+12}$$

$$\mathbf{f)} \ \frac{6x^2 - 7x - 5}{3x^2 + x - 10}$$

Multiplying Rational Expressions

a)
$$\frac{4x^2}{3x} \cdot \frac{12x^3}{2x}$$

- factor where possible
 cancel common factors
- **3.** multiply numerators and denominators
- 4. state restrictions (throughout process)

b)
$$\frac{4x+24}{x^2+8x} \cdot \frac{12x^2}{3x+18}$$

c)
$$\frac{a^2+2a}{3a} \cdot \frac{20a^2}{5a^2+10a}$$

d)
$$\frac{x+1}{2x} \cdot \frac{3x}{x^2+4x+3}$$

e)
$$\frac{5x^2-13x+8}{x-7} \cdot \frac{1}{5x-8}$$

Dividing Rational Expressions

a)
$$\frac{10ab^2}{4a} \div \frac{15a^2}{12b^2}$$

1. flip second fraction and change to multiplication

2. factor where possible

3. cancel common factors

4. multiply numerators and denominators

5. state restrictions (throughout process)

b)
$$\frac{a^2+2a}{3a} \div \frac{5a^2+10a}{20a^2}$$

c)
$$\frac{2x^2-8x}{x^2-3x-10} \div \frac{4x^2}{x^2-9x+20}$$