2.1/2.2 Restricting, Simplifying, Multiplying, and Dividing Rational Expressions

Lesson Outline:

Part 1: Stating restrictions
Part 2: Simplifying rational expressions
Part 3: Multiplying rational expressions
Part 4: Dividing rational expressions

What is a rational expression?

Rational expression: the quotient of two

 polynomials, $\frac{p(x)}{q(x)}$, where $q(x) \neq 0$.
Example of a graph of a rational expression:

The open circle is used to represent a hole in the graph. This corresponds to any restrictions on the variable (denominator cant be 0).

$$
\begin{aligned}
x-2 & \neq 0 \\
x & \neq 2
\end{aligned}
$$

Stating Restrictions

Note: rational expressions must be checked for restrictions by determining where the denominator is equal to zero. These restrictions must be stated when the expression is simplified.

> | $\begin{array}{l}\text { bottom of a fraction can } \\ \text { NOT }=0 \text {. }\end{array}$ |
| :--- |

Example 1: State the restrictions for the following rational expressions
a)

$$
\frac{x+2}{x-2}
$$

b) $\frac{x+2}{(x-3)(x+4)}$
c) $\frac{5}{x(x+3)}$
$x-3 \neq 0$
$x \neq 3$
$x \neq 0$
$x-2 \neq 0$
$x \neq 2$
$x \neq 2$

$$
\begin{aligned}
x+4 & \neq 0 \\
x & \neq-4 \\
x & \neq 3,-4
\end{aligned}
$$

$$
\begin{gathered}
x+3 \neq 0 \\
x \neq-3
\end{gathered}
$$

$$
x \neq-3
$$

$$
x \neq 0,-3
$$

Rule: We can cancel out ONLY when multiplying fractions

You can cancel factors.

$$
\left.\begin{array}{rl}
\frac{x(x+1)}{x} & =x+1 \\
\text { eg. } \frac{34 b x(x+3)}{24 x} & =\frac{3 x+9}{2}
\end{array}\right] \begin{aligned}
& \text { These are } \\
& \text { examples of } \\
& \text { when cancelling } \\
& \text { is allowed. }
\end{aligned}
$$

Rule: We can NOT cancel out when adding or subtracting fractions
eeg. $\frac{x+8}{x} \xrightarrow[N O]{=}$ Don't do this! egg. $\frac{2 x+3}{4 x}$ No cancelling!
eg. $\frac{2 x+3}{4 x}$

Simplifying Rational Expressions
Example 2: Simplifying each expression and determine any restrictions on the variable.
a)

$$
\left.\begin{array}{ll}
\frac{3 x^{21}}{y x^{\prime}}, & y \neq 0 \\
x \neq 0
\end{array}\right] \begin{array}{ll}
=\frac{3 x}{y}, & y \neq 0 \\
x \neq 0
\end{array}
$$

b)

$$
\begin{aligned}
& \frac{x-3}{x^{2}+3 x-18} \\
&= x-3 \\
&(x+6)(x-3)
\end{aligned} \begin{array}{r}
\text { Note: fo } \\
\text { and the } \\
\text { before }
\end{array}
$$

$$
\begin{aligned}
& \text { Note: factor where possible } \\
& \text { and then state restrictions }
\end{aligned}
$$

and then state restrictions
before cancelling factors.
c)

$$
\begin{aligned}
& \frac{x^{2}+10 x+21}{x+3}, x \neq-3 \\
& =\frac{(x+7)(x+3)}{x+3}, x \neq-3 \\
& =x+7, x \neq-3
\end{aligned}
$$

d)

$$
\begin{aligned}
& \frac{x+1}{x^{2}+3 x+2} \\
= & \frac{x+1}{(x+2)(x+1)}, x \neq-2,-1 \\
= & \frac{1}{x+2}
\end{aligned}
$$

e)
$\frac{x^{2}-9}{x^{2}+7 x+12}$ difference of squares: $a^{2}-b^{2}=(a-b)(a+b)$

$$
\begin{aligned}
& x^{2}+7 x+12 \\
& =\frac{(x-3)(x+3)}{(x+4)(x+3)}, x \neq-4,-3 \\
& =\frac{x-3}{x+4}, x \neq-4,-3
\end{aligned}
$$

f)

$$
\begin{aligned}
& \frac{6 x^{2}-7 x-5}{3 x^{2}+x-10} \\
& \text { Factor numerator } \\
& 6 x^{2}-10 x+3 x-5 \\
& =\left(6 x^{2}-10 x\right)+(3 x-5) \\
& =2 x(3 x-5)+1(3 x-5) \\
& =(2 x+1)(3 x-5) \\
& \text { Factor demanimor } \\
& 3 x^{2}+x-10 \\
& =3 x^{2}+6 x-5 x-10 \\
& =\left(3 x^{2}+6 x\right)+(-5 x-10) \\
& \begin{array}{l}
=3 x(x+2)-5(x+2) \\
=(x+2)(3 x-5)
\end{array} \\
& =\frac{(2 x+1)(3 x-5)}{(x+2)(3 x-5)}, x \neq-2, \frac{5}{3} \\
& =\frac{2 x+1}{x+2} \text {, } x \neq-2, \frac{5}{3}
\end{aligned}
$$

Multiplying Rational Expressions
a)

$$
\begin{aligned}
& \frac{24 x^{21}}{12 x} \cdot \frac{412 x^{8^{2}}}{12 x} ; x \neq 0 \\
& =8 x^{3} ; x \neq 0
\end{aligned}
$$

1. factor where possible
2. cancel common factors
3. multiply numerators and denominators
4. state restrictions (throughout process)
b)

$$
\begin{aligned}
& \frac{4 x+24}{x^{2}+8 x} \cdot \frac{12 x^{2}}{3 x+18} \\
= & \frac{4(x+6)}{\not x(x+8)} \cdot \frac{412 x^{21}}{13(x+6)} ; x \neq 0,-8,-6 \\
= & \frac{16 x}{x+8} ; x \neq 0,-8,-6
\end{aligned}
$$

c)

$$
\begin{aligned}
& \frac{x+1}{2 x} \cdot \frac{3 x}{x^{2}+4 x+3}, x \neq 0 \\
= & \frac{x+1}{2 x} \cdot \frac{3 x}{(x+1)(x+3)} ; x \neq 0,-1,-3 \\
= & \frac{3}{2(x+3)} ; x \neq 0,-1,-3
\end{aligned}
$$

d)

$$
\begin{aligned}
& * \frac{5 x^{2}-13 x+8}{x-7} \cdot \frac{1}{5 x-8} ; \begin{aligned}
& \begin{aligned}
& \text { factor } \\
&=5 x^{2}-8 x-5 x+8 \\
&=\left(5 x^{2}-8 x+(-5 x+8)\right. \\
&=x(5 x-8)-1(5 x-8) \\
&=(5 x-8)(x-1)
\end{aligned} \\
&=\frac{(5 x-8)(x-1)}{x-7} \cdot \frac{1}{5 x-8} ; x \neq 7, \frac{8}{5}
\end{aligned} \\
& =\frac{x-1}{x-7} ; x \neq 7, \frac{8}{5}
\end{aligned}
$$

Dividing Rational Expressions
a)

$$
\begin{aligned}
& \frac{10 a b^{2}}{4 a} \div \frac{15 a^{2}}{12 b^{2}} \\
& \text { no cross cancelling until } \\
& \begin{array}{l}
\text { after second fraction has } \\
\text { been flipped }
\end{array} \\
& =\frac{10 a b^{2}}{4 a} \times \frac{12 b^{2}}{15 a^{2}} \\
& =\frac{2120 a b^{4}}{60 a^{72}} ; \quad \begin{array}{l}
a \neq 0 \\
b \neq 0
\end{array} \\
& =\frac{2 b^{4}}{a^{2}} ; \begin{array}{l}
a \neq 0 \\
b \neq 0
\end{array} \\
& \text { 2. factor where possible } \\
& \begin{array}{l}
\text { 3. cancel common factors } \\
\text { 4. multiply numerators and }
\end{array} \\
& \text { denominators } \\
& \text { 5. state restrictions } \\
& \text { (throughout process) } \\
& \text { because ' } b \text { ' was } \\
& \text { in the denominator of } \\
& \text { the original expression }
\end{aligned}
$$

1. flip second fraction and change to multiplication
b)

$$
\begin{aligned}
& \frac{a^{2}+2 a}{3 a} \div \frac{5 a^{2}+10 a}{20 a^{2}} \\
= & \frac{a^{2}+2 a}{3 a} \times \frac{20 a^{2}}{5 a^{2}+10 a} ; a \neq 0 \\
= & \frac{\alpha(a+2)}{3 \not a} \times \frac{420 a^{2+1}}{8 k(a+2)} ; a \neq 0,-2 \\
= & \frac{4 a}{3} ; a \neq 0,-2
\end{aligned}
$$

c)

$$
\begin{aligned}
& \frac{2 x^{2}-8 x}{x^{2}-3 x-10} \div \frac{4 x^{2}}{x^{2}-9 x+20} \\
= & \frac{2 x^{2}-8 x}{x^{2}-3 x-10} \times \frac{x^{2}-9 x+20}{4 x^{2}} \\
= & \frac{12 x(x-4)}{(x-5)(x+2)} \times \frac{(x-5)(x-4)}{2 \not 2 x^{2}} \\
= & \frac{(x-4)^{2}}{2 x(x+2)} ; x \neq-2,0,4,5
\end{aligned}
$$

DO WORKSHEET

