2.2 Add and Subtract Rational Expressions

DO IT NOW!

$\angle C D=30$
a) $\quad \times 5 \frac{1}{\times 5}+\frac{1}{5 \times 6}$

$$
\begin{aligned}
& =\frac{5}{30}+\frac{6}{30} \\
& =\frac{11}{30}
\end{aligned}
$$

Note: the product of the denominators will give a common denominator (but not always the lowest common denominator)
b)

Simplify and state restrictions

$$
\begin{aligned}
\frac{x^{2}-1}{x^{2}-4} \times \frac{x^{2}+3 x-4}{x^{2}+5 x+4} & =\frac{(x-1)(x+1)}{(x-2)(x+2)} \times \frac{(x+4)(x-1)}{(x+4)(x+1)} \\
& =\frac{(x-1)^{2}}{(x-2)(x+2)} ; x \neq 2,-2,-4,-1
\end{aligned}
$$

c)

$$
\left.\begin{array}{rl}
& \frac{2 x 2 x}{2 x}+\frac{y^{y}}{6 x^{y}} \\
= & \frac{4 x^{2}}{6 x y}+\frac{y^{2}}{6 x y} ; \underset{\substack{x, \neq 0 \\
y \neq 0}}{ } \\
= & \frac{4 x^{2}+y^{2}}{6 x y} ; x \neq 0 \\
y \neq 0
\end{array}\right)
$$

$$
\angle C D=6 x y
$$

Add and Subtract Rational Expressions With Monomial Denominators
a)

$$
\begin{aligned}
& \times^{2} \frac{1}{5 x}+\frac{1}{2 x} \times 5 \quad \angle C D=10 x \\
& =\frac{2}{10 x}+\frac{5}{10 x} ; x \neq 0 \\
& =\frac{7}{10 x} ; x \neq 0
\end{aligned}
$$

a)
b)

$$
\begin{aligned}
& \begin{aligned}
& \frac{\boldsymbol{a} \boldsymbol{b}^{2}+2}{2 \boldsymbol{a} \boldsymbol{b}^{2}}-\frac{\boldsymbol{b}+\mathbf{2}^{(a b)}}{\mathbf{2} \boldsymbol{b}^{(a b)}} \\
&= \frac{a b^{2}+2}{2 a b^{2}}-\frac{a b(b+2)}{2 a b^{2}}: \quad: \quad a \neq 0 \\
& b \neq 0
\end{aligned} \\
& =\frac{a b^{2}+2}{2 a b^{2}}-\frac{a b^{2}+2 a b}{2 a b^{2}} ; \quad: \quad a \neq 0 \\
& =\frac{a b^{2}+2-a b^{2}-2 a b}{2 a b^{2}}: a \neq 0 \\
& =\frac{2-2 a b}{2 a b^{2}} \quad: \quad \begin{array}{l}
a \neq 0 \\
b \neq 0
\end{array} \\
& =\frac{2(1-a b)}{2 a b^{2}} \quad: \quad \begin{array}{l}
a \neq 0 \\
b \neq 0
\end{array} \\
& =\frac{1-a b}{a b^{2}}: \begin{aligned}
& a \neq 0 \\
& b \neq 0
\end{aligned}
\end{aligned}
$$

Add and Subtract Rational Expressions with Polynomial Denominators
a)

1. factor denominators if possible
2. get a common denominator
3. re-write expression with a common denominator
4. add/subtract the numerator (keep denominator the same)
5. simplify where possible
6. state restrictions (throughout process)

$$
\left.\begin{array}{l}
(x+2) \frac{x+5}{x-3}+\frac{x-7}{x+2}(x-3) \\
=\frac{(x+2)(x+3)}{(x+2)(x-3)}+\frac{(x-7)(x-3)}{(x+2)(x-3)} ; x \neq-2,3
\end{array}\right] \begin{aligned}
& \begin{array}{l}
\text { 3. re-write e } \\
\text { 4. add sabra } \\
\text { (keep denom } \\
\text { 5. simplify u } \\
\text { 6. state restri }
\end{array} \\
& =\frac{x^{2}+7 x+10}{(x+2)(x-3)}+\frac{x^{2}-10 x+21}{(x+2)(x-3)} ; x \neq-2,3 \\
& =\frac{2 x^{2}-3 x+31}{(x+2)(x-3)} ; x \neq-2,3
\end{aligned}
$$

b)

$$
\begin{aligned}
& \frac{x+9}{x^{2}+2 x-48}-\frac{x-9}{x^{2}-x-30} \\
= & \frac{(x+5)}{(x+9)(x+8)(x-6)}-\frac{x-9 \quad(x+8)}{(x-6)(x+5)(x+8)} \\
= & \frac{(x+5)(x+9)}{(x+5)(x+8)(x-6)}-\frac{(x-9)(x+8)}{(x+5)(x+8)(x-6)} \\
= & \frac{x^{2}+14 x+45-\left(x^{2}-1 x-72\right)}{(x+5)(x+8)(x-6)} \\
= & \frac{15 x+117}{(x+5)(x+8)(x-6)} ; x \neq-5,-8,6
\end{aligned}
$$

c)

$$
\begin{aligned}
& \frac{x-2}{x+2}+\frac{x+10}{x^{2}+6 x+8} \quad \angle C D=(x+2)(x+4) \\
& =\frac{(x+4) x-2}{(x+2) x+2}+\frac{x+10}{(x+2)(x+4)} \\
& =\frac{(x+4)(x-2)}{(x+4)(x+2)}+\frac{x+10}{(x+4)(x+2)} \\
& =\frac{x^{2}+2 x-8+x+10}{(x+4)(x+2)} \\
& =\frac{x^{2}+3 x+2}{(x+4)(x+2)} \\
& =\frac{(x+2)(x+1)}{(x+4)(x+2)} \\
& =\frac{x+1}{x+4} ; x \neq-4,-2
\end{aligned}
$$

d)

$$
\begin{aligned}
& \quad \frac{2 x}{x-1}-\frac{x+2}{x^{2}+3 x-4} \\
& =\frac{(x+4)}{2 x}-\frac{x+2}{(x+4)}-\frac{2 x+1)(x-1)(x-1)}{(x+4)(x-1)}-\frac{(x+2)}{(x+4)(x-1)} \\
& = \\
& =\frac{2 x(x+4)}{(x+4)(x-1)} \\
& = \\
& =\frac{2 x^{2}+7 x-2}{(x+4)(x-1)}
\end{aligned}
$$

e)

$$
\begin{aligned}
& \frac{a+1}{5-2 a}-\frac{a-4}{2 a-5} \\
= & \frac{a+1}{1(-5+2 a)}-\frac{a-4}{2 a-5} \\
= & \frac{(-1) a+1}{2 a-5}-\frac{a-4}{2 a-5} \\
= & \frac{-1(2 a-5)}{2 a-5} \\
= & \frac{-1(a+1)-(a-4)}{2 a-5} \\
= & \frac{-a-1-a+4}{2 a-5} \\
= & \frac{-2 a+3}{2 a-5} ; a \neq \frac{5}{2}
\end{aligned}
$$

Binomial expressions can differ by a factor of -1. Factor -1 from one of the denominators to identify the common denominator. Then simplify each expression and state the restrictions.

Complete Worksheet

