1.5 Solving Quadratic Equations - Part 1: Solve by Factoring - Lesson MCR3U
Jensen

DO IT NOW

Simplify each of the following:

1) $(\sqrt{2}+3 \sqrt{3})(5 \sqrt{3}-10)$
2)

$\frac{2-\sqrt{80}}{4}$
3) $4 \sqrt{10}(3+2 \sqrt{2})$

$$
\begin{aligned}
& \text { *In all cases we will start with an equation in } \\
& \text { Standard Form and we will set it equal to } 0 \text { : } \\
& \qquad a x^{2}+b x+c=0 \\
& \text { NOTE: If it's not in standard form, you must rearrange before factoring. }
\end{aligned}
$$

How to Solve Quadratics

Solving a quadratic means to find the x-intercepts (or roots).

To solve a quadratic equation:

1) It must be set to equal 0 . Before factoring, it must be in the form $a x^{2}+b x+c=0$
2) Factor the left side of the equation
3) Set each factor to equal zero and solve for ' x '.

Example 1: Solve the following quadratics by factoring
a) $0=x^{2}-15 x+56$
b) $-6=x^{2}-5 x$
c) $0=2 x^{2}-8 x-42$

Example 2: Solve by factoring
a) $8 x^{2}+2 x-15=0$

When factoring $a x^{2}+b x+c=0$ when ' a ' is 1 or can be factored out Steps to follow:

1) Check if there is a common factor that can be divided out
2) Look at the 'c' value and the ' b ' value
3) Determine what factors multiply to give ' c ' and add to give ' b '
4) put those factors into $(x+r)(x+s)$ for 'r' and 's'.
5) make sure nothing else can be factored

Steps to factoring $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$ when 'a' cannot be factored out and is not 1 .

> 1) Look to see if there is a common factor that can be divided out
> 2) Take the 'a' value and multiply it to the 'c' value
> 3) Determine what factors of THIS number add together to get the 'b' value
> 4) Break the 'b' value up into THOSE factors!
> 5) Put parenthesis around the first two variables and the last two
> 6) Factor by grouping
b) $2 x^{2}-11 x=-15$

Example 3: For the quadratic $y=2 x^{2}-4 x-16$
a) Find the roots of the quadratic by factoring
b) Find the axis of symmetry (average of x-intercepts)
c) Find the coordinates of the vertex and state if it is a max or min value

