1.5 Solving Quadratic Equations - Part 1: Solve by Factoring - Lesson

MCR3U Jensen

DO IT NOW

Simplify each of the following:

1)
$$(\sqrt{2} + 3\sqrt{3})(5\sqrt{3} - 10)$$

2)
$$\frac{2-\sqrt{80}}{4}$$

3)
$$4\sqrt{10}(3+2\sqrt{2})$$

*In all cases we will start with an equation in Standard Form and we will set it equal to 0:

$$ax^2+bx+c=0$$

NOTE: If it's not in standard form, you must rearrange before factoring.

How to Solve Quadratics

Solving a quadratic means to find the x-intercepts (or roots).

To solve a quadratic equation:

- 1) It must be set to equal 0. Before factoring, it must be in the form $ax^2+bx+c=0$
- 2) Factor the left side of the equation
- 3) Set each factor to equal zero and solve for 'x'.

zero product rule: if two factors have a product of zero; one or both of the factors must equal zero.

Example 1: Solve the following quadratics by factoring

a)
$$0 = x^2 - 15x + 56$$

When factoring ax²+bx+c=0 when 'a' is 1 or can be factored out

Steps to follow:

- Check if there is a common factor that can be divided out
- 2) Look at the 'c' value and the 'b' value
- 3) Determine what factors multiply to give 'c' and add to give 'b'
- 4) put those factors into (x+r)(x+s) for 'r' and 's'.
- 5) make sure nothing else can be factored

b)
$$-6 = x^2 - 5x$$

c)
$$0 = 2x^2 - 8x - 42$$

Example 2: Solve by factoring

a)
$$8x^2 + 2x - 15 = 0$$

Steps to factoring ax 2+bx+c when 'a' cannot be factored out and is not 1.

- 1) Look to see if there is a common factor that can be divided out
- 2) Take the 'a' value and multiply it to the 'c' value
- 3) Determine what factors of THIS number add together to get the 'b' value
- 4) Break the 'b' value up into THOSE factors!
- 5) Put parenthesis around the first two variables and the last two
- 6) Factor by grouping

b)
$$2x^2 - 11x = -15$$

Example 3: For the quadratic $y = 2x^2 - 4x - 16$

a) Find the roots of the quadratic by factoring

b) Find the axis of symmetry (average of x-intercepts)

c) Find the coordinates of the vertex and state if it is a max or min value