## L5 - Problems in 2 and 3 Dimensions

MCR3U
Jensen
$\ldots$ are used to solve triangles that contain a right angle.
$\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }} \quad \cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }} \quad \tan \theta=\frac{\text { opposite }}{\text { adjacent }}$

adjacent

The $\qquad$ and $\qquad$ are used to solve oblique triangles. An oblique triangle is any triangle that is NOT a right triangle.

Sine Law can be used if you know:
i) $\quad 2$ sides and one angle opposite a given side
ii) 2 angles and any side

The Cosine Law can be used if you know:
i) $\quad 2$ sides and the angle contained by those 2 sides

ii) All 3 sides

## Part 1: Problems in 2 Dimensions

Example 1: Jonathan needs a new rope for his flagpole but is unsure of the length required. He measures a distance of 10 m away from the base of the pole. From this point, the angle of elevation to the top of the pole is $42^{\circ}$. What is the height of the pole, to the nearest tenth of a meter?


Example 2: Pam, Steven and Rachel are standing on a soccer field. Steven and Rachel are 23 m apart. From Steven's point of view, the other two are separated by $72^{\circ}$. From Pam's point of view, the others are separated by an angle of $55^{\circ}$. Determine the distance from Pam to Rachel.


Example 3: A drive belt wraps around three pulleys as shown. Find the perimeter of the drive belt to the nearest tenth of a cm .



## Part 2: Problems in 3 Dimensions

Example 4: A vertical flag pole TP stands in the corner of a rectangular field QRST. Using the information given in the diagram, calculate (a) The height of the flag pole and (b) The angle of elevation of P from S. Round answers to nearest tenth.


Example 5: From point B, Manny estimates the angle of elevation to the top of a cliff as $38^{\circ}$. From point D, 68.5 meters away from Manny, Joe estimates the angle between the base of the cliff, himself, and Manny to be $42^{\circ}$, while Manny estimates the angle between the base of the cliff, himself, and his friend Joe to be $63^{\circ}$. What is the height of the cliff to the nearest tenth of a meter?


Example 6: Emma is on a 50 meter high bridge and sees two boats anchored below. From her position, boat A has a bearing of $230^{\circ}$ and boat B has a bearing of $120^{\circ}$. Emma estimates the angles of depression to be $38^{\circ}$ for boat A and $35^{\circ}$ for boat B. How far apart are the boats to the nearest meter?


