1.5 Solving Quadratic Equations
 Part 2: Solve Using QF

Lesson Outline:

Part 1: Do It Now - QF Refresher
Part 2: Discriminant review
Part 3: Find exact solutions of a quadratic with 2 roots
Part 4: Solve a quadratic with 1 solution
Part 5: Solve a quadratic with 0 solutions
Part 6: Use the discriminant to determine the number of solutions (x-intercepts) a quadratic has

Part 7: Application

DO IT NOW!

a) Do you remember the quadratic formula?

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

b) Use the quadratic formula to find the x -intercepts of:

$$
\begin{aligned}
& 0=2 x^{\mathbf{2}}+\mathbf{7} x-4 . \quad \begin{array}{l}
\text { Don't forget that to solve a quadratic, it } \\
\text { must be set equal to zero because at an } x \\
\text { intercept, the } y \text {-coordinate will be zero. }
\end{array} \\
& x=\frac{-7 \pm \sqrt{(7)^{2}-4(2)(-4)}}{2(2)} \\
& x=\frac{-7 \pm \sqrt{49+32}}{4} \\
& x=\frac{-7 \pm \sqrt{81}}{4} \\
& x=\frac{-7+9}{4} \text { or } x=\frac{-7-9}{4} \\
& =\frac{1}{2} \quad=-4
\end{aligned}
$$

Part 2: Discriminant Review

Do all parabolas have two x-intercepts?
NO
What are the three different scenarios?
0,1 , or 2 solutions

The way to determine how many x-intercepts a parabola might have is by evaluating the $b^{2}-4 a c$ part of the quadratic formula (called the "discriminant")

Discriminant: the value under the square root

If $b^{\mathbf{2}}-\mathbf{4 a c}>0$, there are two solutions

If $\boldsymbol{b}^{\mathbf{2}}-\mathbf{4 a c}=\mathbf{0}$, there is one solution

If $\boldsymbol{b}^{\mathbf{2}}-\mathbf{4 a c}<0$, there are no solutions

Objective: Determine the roots of a quadratic using the quadratic formula and leave as EXACT answers Exact answer: as a radical or fraction. Exact answers do not have decimals.

Example 1: Find the exact solutions of

$$
\begin{aligned}
& 3 x^{2}-10 x+5=0 \\
& x=\frac{10 \pm \sqrt{(-10)^{2}-4(3)(5)}}{2(3)} \\
&=\frac{10 \pm \sqrt{40}}{6} \quad \text { (simplify the radical) } \\
&=\frac{10 \pm \sqrt{4}(\sqrt{10)}}{6} \\
&=\frac{10 \pm 2 \sqrt{10}}{6} \quad \text { (common factor) } \\
&=\frac{12(5 \pm \sqrt{10)}}{36} \quad \text { (reduce) } \\
&=\frac{5 \pm \sqrt{10}}{3} \\
& x=\frac{5+\sqrt{10}}{3} \text { or } x=\frac{5-\sqrt{10}}{3}
\end{aligned}
$$

Example 2: Find the exact solutions of

$$
\begin{aligned}
& -2 x^{2}+8 x-5=0 \\
x & =\frac{-8 \pm \sqrt{(8)^{2}-4(-2)(-5)}}{2(-2)} \\
& =\frac{-8 \pm \sqrt{24}}{-4} \quad \text { (simplify the rod } \\
& =\frac{-8 \pm \sqrt{4}(\sqrt{6})}{-4} \\
& =\frac{-8 \pm 2 \sqrt{6}}{-4} \quad \text { (common factor) } \\
& =\frac{1-2(4 \mp \sqrt{6})}{2-24} \quad \text { (reduce) } \\
& =\frac{4 \mp \sqrt{6}}{2} \quad \\
x & =\frac{4-\sqrt{6}}{2} \text { or } x=\frac{4+\sqrt{6}}{2}
\end{aligned}
$$

Note: when a quadratic only has 1 solution, the x-intercept is also the vertex

Example 3: Find the exact roots of

$$
\begin{aligned}
& 4 x^{2}+24 x+36=0 \\
& 4\left(x^{2}+6 x+9\right)=0 \\
& x^{2}+6 x+9=0 \\
& x=\frac{-6 \pm \sqrt{(6)^{2}-4(1)(9)}}{2(1)} \\
& x=\frac{-6 \pm \sqrt{0}}{2} \\
& x=\frac{-6}{2} \\
& x=-3
\end{aligned}
$$

2 Scenarios causing 0 roots:

i) vertex is above the x-axis and opens up
ii) vertex is below the x-axis and opens down

Example 4: Find the x-intercepts of

$$
\begin{aligned}
& 8 x^{2}-11 x+5=0 \\
& x=\frac{11 \pm \sqrt{(-1)^{2}-4(8)(5)}}{2(8)} \\
& x=\frac{11 \pm \sqrt{-39}}{16} \\
& \text { \& no solutions }
\end{aligned}
$$

Part 6: Use the Discriminant to Determine the Number of Roots

Example 5: For each of the following quadratics, use the discriminant to state the number of roots it will have.

b) $\stackrel{a}{3} x^{2}-\stackrel{\rightharpoonup}{7} x+\stackrel{c}{5}=0$

$$
\begin{aligned}
b^{2}-4 a c & =(-7)^{2}-4(3)(5) \\
& =49-60 \\
& =-11 \\
-11 & <0 ; \text { of no solutions }
\end{aligned}
$$

c) $-4 x^{2}+12 x-9=0$

$$
\begin{aligned}
b^{2}-4 a c & =(12)^{2}-4(-4)(-9) \\
& =144-144 \\
& =0 \\
0 & =0 ; \$ 1 \text { solution }
\end{aligned}
$$

Part 7: Application

Example 6: A ball is thrown and the equation below model it's path:

$$
h=-0.25 d^{2}+2 d+1.5
$$

' h ' is the height in meters above the ground and ' d ' is the horizontal distance in meters from the person who threw the ball.
a) At what height was the ball thrown from? sove for ' h ' wher $d=0$

$$
\begin{aligned}
n & =-0.25(0)^{2}+2(0)+1.5 \\
& =1.5 \text { meters }
\end{aligned}
$$

b) How far has the ball travelled horizontally when it lands on the ground?

$$
\begin{aligned}
0 & =-0.25 d^{2}+2 d+1.5 \\
0 & =-0.25\left(d^{2}-8 d-6\right) \\
0 & =d^{2}-8 d-6 \\
d & =\frac{8 \pm \sqrt{(-8)^{2}-4(1)(-6)}}{2(1)} \\
& =\frac{8 \pm \sqrt{88}}{2} \\
d & =\frac{8+\sqrt{88}}{2} \quad o \quad d=\frac{8-\sqrt{88}}{2} \quad \text { reject } \\
=8.7 \text { meters } & =-6.7 \text { meters }
\end{aligned}
$$

