```
L7 - Trig Identities
MCR3U
Jensen
```

: A mathematical equation that is true for ALL values of the given variables.

Part 1: Proving the Pythagorean and Quotient Identities

For this part you will need to remember that trig ratios can be written in terms of x and y

Example 1: Prove the quotient identity $\tan \theta=\frac{\sin \theta}{\cos \theta}$

Example 2: Prove the Pythagorean identity $\sin ^{2} \theta+\cos ^{2} \theta=1$

Fundamental Trigonometric Identities		
Reciprocal Identities	Quotient Identities	Pythagorean Identities
$\csc \theta=\frac{1}{\sin \theta}$	$\frac{\sin \theta}{\cos \theta}=\tan \theta$	
$\sec \theta=\frac{1}{\cos \theta}$		
$\cot \theta=\frac{1}{\tan \theta}$	$\frac{\cos \theta}{\sin \theta}=\cot \theta$	

Tips and Tricks		
Reciprocal Identities	Quotient Identities	Pythagorean Identities
Square both sides	Square both sides	Rearrange the identity
$\csc ^{2} \theta=\frac{1}{\sin ^{2} \theta}$	$\frac{\sin ^{2} \theta}{\cos ^{2} \theta}=\tan ^{2} \theta$	$\sin ^{2} \theta=1-\cos ^{2} \theta$
$\sec ^{2} \theta=\frac{1}{\cos ^{2} \theta}$	$\frac{\cos ^{2} \theta=1-\sin ^{2} \theta}{\sin ^{2} \theta}=\cot ^{2} \theta$	
$\cot ^{2} \theta=\frac{1}{\tan ^{2} \theta}$		
General tips for proving identities:		
i) Try to change everything to $\sin \theta$ or $\cos \theta$		
ii) If you have to fractions being added or $\operatorname{subtracted,~find~a~common~}$		
iii) Use difference of squares $\rightarrow 1-\sin ^{2} \theta=(1-\sin \theta)(1+\sin \theta)$		
iv) Use the power rule $\rightarrow \sin 6 \theta=\left(\sin ^{2} \theta\right)^{3}$		

We will use the preceding identities to help us prove more complex identities in the following examples.

Example 3: Prove each of the following identities
a) $\frac{\cos \theta \tan \theta}{\sin \theta}=1$
b) $\tan ^{2} \theta+1=\sec ^{2} \theta$
c) $\cos ^{2} x=(1-\sin x)(1+\sin x)$
d) $\frac{\sin ^{2} x}{1-\cos x}=1+\cos x$
e) $\sin \theta \sec \theta \cot \theta=1$
f) $\frac{1}{1-\sin x}-\frac{1}{1+\sin x}=\frac{2 \tan x}{\cos x}$
g) $(\sin x+\cos x)^{2}+(\sin x-\cos x)^{2}=2$
h) $\tan x+\frac{\cos x}{1+\sin x}=\sec x$

