


MCR3U Jensen

_____: A mathematical equation that is true for ALL values of the given variables.

Part 1: Proving the Pythagorean and Quotient Identities

For this part you will need to remember that trig ratios can be written in terms of \boldsymbol{x} and \boldsymbol{y}

Example 1: Prove the quotient identity $\tan \theta = \frac{\sin \theta}{\cos \theta}$

Example 2: Prove the Pythagorean identity $\sin^2\theta + \cos^2\theta = 1$

Fundamental Trigonometric Identities		
Reciprocal Identities	Quotient Identities	Pythagorean Identities
$csc \theta = \frac{1}{\sin \theta}$ $sec \theta = \frac{1}{\cos \theta}$ $cot \theta = \frac{1}{\tan \theta}$	$\frac{\sin\theta}{\cos\theta} = \tan\theta$ $\frac{\cos\theta}{\sin\theta} = \cot\theta$	$sin^2\theta + cos^2\theta = 1$

Tips and Tricks			
Reciprocal Identities	Quotient Identities	Pythagorean Identities	
Square both sides $csc^2 \ \theta = \frac{1}{sin^2 \theta}$	Square both sides $\frac{\sin^2 \theta}{\cos^2 \theta} = \tan^2 \theta$	Rearrange the identity $sin^2\theta = 1 - cos^2\theta$	
$sec^{2} \theta = \frac{1}{cos^{2} \theta}$ $cot^{2} \theta = \frac{1}{tan^{2} \theta}$	$\frac{\cos^2 \theta}{\sin^2 \theta} = \cot^2 \theta$	$\cos^2\theta = 1 - \sin^2\theta$	

General tips for proving identities:

- Try to change everything to $\sin \theta$ or $\cos \theta$ i)
- If you have to fractions being added or subtracted, find a common ii) denominator and combine the fractions
- Use difference of squares $\rightarrow 1 \sin^2 \theta = (1 \sin \theta)(1 + \sin \theta)$ Use the power rule $\rightarrow \sin^6 \theta = (\sin^2 \theta)^3$ iii)
- iv)

We will use the preceding identities to help us prove more complex identities in the following examples.

Example 3: Prove each of the following identities

a)
$$\frac{\cos\theta\tan\theta}{\sin\theta} = 1$$

b)
$$\tan^2 \theta + 1 = \sec^2 \theta$$

c)
$$\cos^2 x = (1 - \sin x)(1 + \sin x)$$

$$\mathbf{d)} \frac{\sin^2 x}{1 - \cos x} = 1 + \cos x$$

e)
$$\sin \theta \sec \theta \cot \theta = 1$$

$$f) \frac{1}{1-\sin x} - \frac{1}{1+\sin x} = \frac{2\tan x}{\cos x}$$

g)
$$(\sin x + \cos x)^2 + (\sin x - \cos x)^2 = 2$$

$$h) \tan x + \frac{\cos x}{1 + \sin x} = \sec x$$