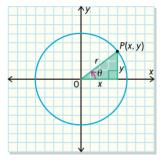

<mark>L7 – Trig Identities</mark>		
MCR3U		
Jensen		


Identity: A mathematical equation that is true for ALL values of the given variables.

Part 1: Proving the Pythagorean and Quotient Identities

For this part you will need to remember that trig ratios can be written in terms of x and y

Example 1: Prove the quotient identity $\tan \theta = \frac{\sin \theta}{\cos \theta}$

L5 = R5

Example 2: Prove the Pythagorean identity $\sin^2 \theta + \cos^2 \theta = 1$

Fundamental Trigonometric Identities					
Reciprocal Identities	Quotient Identities	Pythagorean Identities			
$csc \theta = \frac{1}{sin \theta}$ $sec \theta = \frac{1}{cos \theta}$ $cot \theta = \frac{1}{tan \theta}$	$\frac{\sin\theta}{\cos\theta} = \tan\theta$ $\frac{\cos\theta}{\sin\theta} = \cot\theta$	$sin^2 heta+cos^2 heta=1$			

Reciprocal Identities	Tips and Tricks Quotient Identities	Pythagorean Identities
Square both sides	Square both sides	Rearrange the identity
$csc^2 \theta = \frac{1}{sin^2 \theta}$	$\frac{\sin^2\theta}{\cos^2\theta} = \tan^2\theta$	$sin^2\theta = 1 - cos^2\theta$
$sec^2 \theta = \frac{1}{\cos^2 \theta}$	$\cos^2 \theta$	$\cos^2\theta = 1 - \sin^2\theta$
	$\frac{\cos^2\theta}{\sin^2\theta} = \cot^2\theta$	
$\cot^2 \theta = \frac{1}{\tan^2 \theta}$	SIII U	
eneral tips for proving iden	tities:	

- If you have to fractions being added or subtracted, find a common ii) denominator and combine the fractions Use difference of squares $\rightarrow 1 - \sin^2 \theta = (1 - \sin \theta)(1 + \sin \theta)$ Use the power rule $\rightarrow \sin^6 \theta = (\sin^2 \theta)^3$
- iii)
- iv)

We will use the preceding identities to help us prove more complex identities in the following examples.

Example 3: Prove each of the following identities

a)
$$\frac{\cos\theta \tan\theta}{\sin\theta} = 1$$

= $\cos\theta \tan\theta$
= $\cos\theta \tan\theta$
= $\cos\theta \tan\theta$
= 1
= $\frac{1}{1}$
= $\frac{1}{1}$
= $\frac{1}{1}$
= $\frac{1}{1}$
= 1
= 1
= 1

b) $\tan^2 \theta + 1 = \sec^2 \theta$

c) $\cos^2 x = (1 - \sin x)(1 + \sin x)$

$$\frac{45}{2} = (1-3\ln x)(1+3\ln x)$$

$$= (1-3\ln x)(1+3\ln x)$$

$$= 1-3\ln^{2} x$$

$$= (-3\ln^{2} x)$$

$$= (-3\ln^{2} x)$$

$$= (-3\ln^{2} x)$$

$$= (-3\ln^{2} x)$$

$$d) \frac{\sin^2 x}{1 - \cos x} = 1 + \cos x \qquad \frac{1}{2}$$

$$= \frac{\sin^2 x}{1 - \cos x}$$

$$= \frac{1 - \cos^2 x}{1 - \cos x}$$

$$= (1 - \cos^2 x) (1 + \cos x)$$

$$= (1 - \cos^2 x)$$

$$= (1 - \cos^2 x) (1 + \cos x)$$

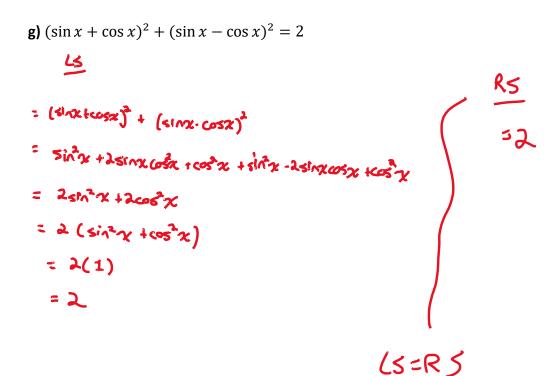
$$= (1 - \cos^2 x) (1 + \cos x)$$

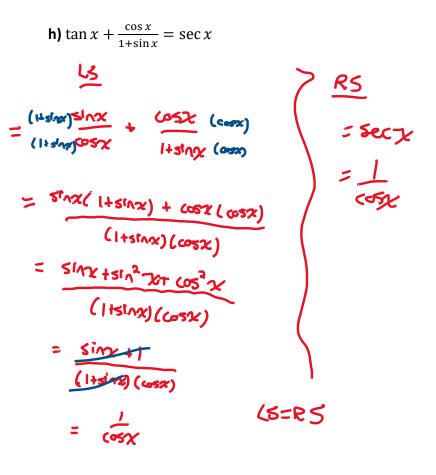
e) $\sin\theta \sec\theta \cot\theta = 1$

$$f) \frac{1}{1-\sin x} - \frac{1}{1+\sin x} = \frac{2\tan x}{\cos x}$$

$$(1+\sin x) = \frac{1}{1+\sin x} - \frac{1}{1+\sin x} (1-\sin x)$$

$$(1+\sin x) = \frac{1+\sin x}{(1+\sin x)(1-\sin x)}$$


$$= \frac{1+\sin x - (1-\sin x)}{(1+\sin x)(1-\sin x)}$$


$$= \frac{1+\sin x - 1}{1-\sin^{2} x}$$

$$= \frac{2\sin x}{\cos^{2} x}$$

$$= \frac{2\sin x}{\cos^{2} x}$$

$$= \frac{2\sin x}{\cos^{2} x}$$

