1.7 Solve Linear-Quadratic Systems

Lesson Outline:

Part 1: Do It Now - review of substitution

Part 2: Possible solutions for a lin-quad system

Part 3: Solve linear-quadratic systems

Part 4: Application

DO IT NOW!

Solve the following linear system using the method of substitution:

(i)
$$y = 3x + 7$$

(j) $y = 2x - 5$
(j) $y = 3x + 7 = 2x - 5$
(j) $y = 3x - 2x = -5 - 7$
(j) $x = -12$
(j) $y = 3x + 7$
(j) $y = -29$
(k) the PoI is $(-12, -29)$

Recall: solving a linear system means to find the point of intersection (POI)

Method of Substitution: solving a linear system by substituting for one variable from one equation into the other equation.

Steps to Solving A Linear-Quadratic System

1. Set equations equal to each-other

Line = Parabola

2. Rearrange to set the equation equal to zero

3. Solve for *x* by factoring or using the QF (the solution will tell you for what value of *x* the functions have the same *y* value)

4. Plug this value of *x* back in to either of the original functions to solve for *y*.

Possible solutions for a linear-quadratic system:

Example 1

a) How many points of intersection are there for the following system of equations?

$$f(x) = \frac{1}{2}x^{2} + 2x - 8 \qquad g(x) = 4x - 10$$
set $f(x) = g(x)$

$$\frac{1}{2}x^{2} + \partial x - 8 = 4x - 10 \qquad (set equal to each other)$$

$$\frac{1}{2}x^{2} + \partial x - 8 = 4x - 10 \qquad (set equal to each)$$

$$\frac{1}{2}x^{2} - 2x + 2 = 0 \qquad (set equal to eace)$$

$$\frac{1}{2}(x^{2} - 4x + 4) = 0 \qquad (connon factor)$$

$$\frac{1}{2}(x^{2} - 4x + 4) = 0$$

$$y^{2} - 4x + 4 = 0$$

$$y^{2} - 4x + 4 = 0$$

$$y^{2} - 4x + 4 = 0$$

$$y^{3} - 4ac = (-4)^{2} - 4(1)(4) \qquad (clock discriminant)$$

$$= 0$$

$$y^{3} = 1 \text{ solution}$$

b) Solve the linear-quadratic system (give exact answers)

$$\chi^2 - 4\chi + 4 = 0$$
 solve by factoring.
 $(\chi - 2)^2 = 0$
 $\chi = 2$
Plug $\chi = 2$ back in to either original equation (linear is usually)
 $g(\chi) = 4\chi - 10$
 $g(\chi) = 4\chi - 10$
 $g(\chi) = -2$
 $g(\chi) = -2$
 $g(\chi) = -2$

Example 2

Solve the following linear quadratic system

$$y = 3x^{2} + 21x - 5$$

$$y = 10x - 1$$

$$3x^{2} + 21x - 5 = 10x - 1$$

$$3x^{2} + 11x - 4 = 0$$

$$y = 10x - 1$$

$$y = 10(-4) - 1$$

$$y = -41$$

$$(x+4)(3x-1) = 0$$

$$x+4 = 0 \quad 3x - 1 = 0$$

$$x_{1} = -4$$

$$y = -41$$

$$(-4y - 41)$$

$$x + 4 = 0 \quad 3x - 1 = 0$$

$$x_{1} = -4$$

$$y = -41$$

$$(-4y - 41)$$

$$y = 10(\frac{1}{3}) - 1$$

$$y = \frac{10}{3} - \frac{3}{3}$$

$$y = \frac{7}{3}$$

$$(\frac{1}{3}, \frac{7}{3})$$

Part 4: Application

Example 3: If a line with slope 4 has one point of intersection with the quadratic function $y = \frac{1}{2}x^2 + 2x - 8$, what is the y-intercept of the line? Write the equation of the line in slope y-intercept form.

 $4x+k = \frac{1}{2}x^{2}+2x-8$ $0 = \frac{1}{2}x^2 - 2x - 8 - k$ Then as } b= -2 and c= -8-k 63-402 =0 (-2)2-4(な)(-8-1)=0 4-2(-8-1)=0 4+16+24 =0 24-2-20 k = - 10

Recall: equation of a line is y = mx + k where k is the y-intercept and *m* is the slope.

Recall: for a lin-quad system to have 1 solution, the discriminant must be zero.

& The equation of the line must be y=4x-10