1.7 Solve Linear-Quadratic Systems

Lesson Outline:

Part 1: Do It Now - review of substitution
Part 2: Possible solutions for a lin-quad system
Part 3: Solve linear-quadratic systems
Part 4: Application

DO IT NOW!

Solve the following linear system using the method of substitution:

Recall: solving a linear system means to find the point of intersection (POI)

$$
\begin{aligned}
& \text { (1) } y=3 x+7 \\
& \text { (2) } y=2 x-5
\end{aligned}
$$

$$
3 x+7=2 x-5
$$

sub x-value back in to (1) or(2) and solve for y.

$$
\begin{aligned}
& y=3 x+7 \\
& y=3(-12)+7 \\
& y=-29
\end{aligned}
$$

8 the POI is $(-12,-29)$

Method of Substitution:
solving a linear system by substituting for one variable from one equation into the other equation.

$$
\begin{gathered}
3 x-2 x=-5-7 \\
x=-12
\end{gathered}
$$

$$
\text { ? the Pod is }(10
$$

Steps to Solving A Linear-Quadratic System

1. Set equations equal to each-other

$$
\text { Line }=\text { Parabola }
$$

2. Rearrange to set the equation equal to zero
3. Solve for x by factoring or using the QF (the solution will tell you for what value of x the functions have the same y value)
4. Plug this value of x back in to either of the original functions to solve for y.

Possible solutions for a linear-quadratic system:

Example 1

a) How many points of intersection are there for the following system of equations?

$$
f(x)=\frac{1}{2} x^{2}+2 x-8 \quad g(x)=4 x-10
$$

$$
\begin{aligned}
& \text { set } f(x)=g(x) \\
& \frac{1}{2} x^{2}+2 x-8=4 x-10 \quad \text { (set equal to each otter) } \\
& \frac{1}{2} x^{2}+2 x-4 x-8+10=0 \quad \text { (set equal to ser) } \\
& \frac{1}{2} x^{2}-2 x+2=0 \\
& \frac{1}{2}\left(x^{2}-4 x+4\right)=0 \\
& x^{2}=4 x+4=0 \\
& b^{2}-4 a c \\
& =(-4)^{2}-4(1)(4) \quad \text { (common Factor) } \\
& =0 \\
& \& 1 \text { solution }
\end{aligned}
$$

b) Solve the linear-quadratic system (give exact answers)

$$
\begin{gathered}
x^{2}-4 x+4=0 \\
(x-2)^{2}=0 \\
x=2
\end{gathered}
$$

solve by factoring.
(hint: it is a perfect squaretninaial)

Plug $x=2$ back in to either original equation
(linear is usually) easier

$$
\begin{aligned}
& g(x)=4 x-10 \\
& g(2)=4(2)-10 \\
& g(2)=-2
\end{aligned}
$$

© The POI is $(2,-2)$

Example 2
Solve the following linear quadratic system

$$
\begin{aligned}
& y=3 x^{2}+21 x-5 \\
& y=10 x-1 \\
& 3 x^{2}+21 x-5=10 x-1 \quad \stackrel{\text { OI \# } 1}{y=10(-4)-1} \\
& 3 x^{2}+11 x-4=0 \\
& (x+4)(3 x-1)=0 \\
& x+4=0 \quad 3 x-1=0 \\
& x_{1}=-4 \quad x_{2}=\frac{1}{3} \\
& \frac{4}{18} \frac{8}{8} / 111^{-12} / \frac{-1}{3} \\
& y=-41 \\
& (-4,-41) \\
& \text { PoI\#2 } \\
& y=10\left(\frac{1}{3}\right)-1 \\
& y=\frac{10}{3}-\frac{3}{3} \\
& y=\frac{7}{3} \\
& \left(\frac{1}{3}, \frac{7}{3}\right)
\end{aligned}
$$

Part 4: Application

$y=4 x+k$

Example 3: If a line with slope 4 has one point of intersection with the quadratic function $y=\frac{1}{2} x^{2}+2 x-8$, what is the y-intercept of the line? Write the equation of the line in slope y-intercept form.

```
\(4 x+k=\frac{1}{2} x^{2}+2 x-8\)
    \(0=\frac{1}{2} x^{2}-2 x-8-k\)
Then \(a=\frac{1}{2} \quad b=-2\) and \(c=-8-k\)
    \(b^{2}-4 a c=0\)
    \((-2)^{2}-4\left(\frac{1}{2}\right)(-8-k)=0\)
        \(4-2(-8-k)=0\)
        \(4+16+2 k=0\)
            \(2 k=-20\)
            \(k=-10\)
```

\& The equation of the line must be $y=4 x-10$

