Sequences (part 2)

Sequences Questions

What is the difference between a sequence and a series?

Sequence - a list of numbers that change by a constant value
Series - the sum of values in a sequence
What is the difference between Arithmetic and Geometric?
arithmetic: + or - to get future terms
geometric: \times to get future terms

Formulas for general terms of a sequence

Arithmetic
 $$
t_{n}=a+(n-1) d
$$

Geometric
 $$
t_{n}=a \cdot r^{n-1}
$$

Example 1:

a) Determine whether the sequence is arithmetic or geometric.

Arithmetic

b) Determine an equation for the sequence.

$$
\begin{aligned}
t_{n} & =a+(n-1) d \\
& =-1 \sigma+(n-1)(6)
\end{aligned}
$$

c) Find the value of $\mathrm{t}_{21} \quad t_{21}=-10+(21-1)(6)$

$$
=110
$$

Example 2: Insert two numbers between 8 and 32 so the four numbers form an arithmetic sequence.

Example 3: An arithmetic sequence is $8,14,20,26, \ldots$. Which term has the value 92 ? Prove mathematically. +6

$$
\begin{aligned}
& t_{n}=a+(n-1) d \\
& 92=8+(n-1)(6) \\
& 84=(n-1)(6) \\
& \frac{84}{6}=n-1 \\
& 14=n-1 \\
& 15=n
\end{aligned}
$$

$$
a=8
$$

$$
\delta=6
$$

Example 4: 200, -100, 50,...

$\times\left(-\frac{1}{2}\right)$
a) Is the sequence arithmetic or geometric?
geometric
b) Find an equation to represent the sequence.

$$
\begin{aligned}
& t_{n}=a \cdot r^{n-1} \\
& t_{n}=200\left(\frac{-1}{2}\right)^{n-1}
\end{aligned}
$$

c) Find $t_{14} \quad t_{14}=200\left(-\frac{1}{2}\right)^{14-1}$

$$
\begin{aligned}
& =200\left(\frac{-1}{8192}\right) \\
& =\frac{-25}{1024}
\end{aligned}
$$

Example 5: Complete the geometric sequence:

Example 6: The 50th term of an arithmetic sequence is 238 and the 93 rd term is 539 . Find a general equation to represent the sequence.

$$
\begin{aligned}
t_{50} & =a+(50-1) d & t_{93} & =a+(93-1) d \\
\text { (1) 238 } & =a+49 d & \text { (2) } 539 & =a+92 d
\end{aligned}
$$

* Solve the system of equations*

$$
\begin{array}{rlrl}
\text { (2) } & 539 & =a+92 d \\
\text { (1) } 238 & =a+49 d \\
\hline 301 & =43 d \\
7 & =d
\end{array} \quad \begin{aligned}
& \text { sub } d=7 \text { into (1) } \\
238 & =a+49 \\
238-343 & =a \\
a & =-105
\end{aligned}
$$

\& the general equation is $t_{n}=-105+(n-1)(7)$

Example 7: Determine the number of terms in the geometric sequence: $5,-10,20, \ldots .,-10240$

$$
\begin{aligned}
t_{n} & =-10240 \\
n & =? \\
a & =5 \\
r & =-2
\end{aligned}
$$

$$
\begin{aligned}
& t_{n}=a \cdot r^{n-1} \\
& -10240=5(-2)^{n-1} \\
& \text { write as } \\
& \text { a paper w } \rightarrow-2048=(-2)^{n-1} \\
& \text { bose (-2). } \\
& (-2)^{\prime \prime}=(-2)^{n-1} \\
& \text { \& } \quad 11=n-1 \\
& 12=n
\end{aligned}
$$

of there are 12 terms in the sequence.

