Sequences (part 2)

Sequences Questions

What is the difference between a sequence and a series?

Sequence - a list of numbers that change by a constant value

Series - the sum of values in a sequence

What is the difference between Arithmetic and Geometric?

arithmetic: + *or* - *to get future terms*

geometric: × to get future terms

Formulas for general terms of a sequence

$$t_n = a + (n-1)d$$

$$t_n = a \cdot r^{n-1}$$

a) Determine whether the sequence is arithmetic or geometric.

b) Determine an equation for the sequence.

$$t_n = a + (n-1)d$$

= -10+(n-1)(6)

c) Find the value of
$$t_{21}$$
 $t_{21} = -16 + (21-1)(6)$

Example 2: Insert two numbers between 8 and 32 so the four numbers form an arithmetic sequence.

Example 3: An arithmetic sequence is 8, 14, 20, 26,.... Which term has the value 92? Prove mathematically.

$$t_{n} = \alpha + (n-1)d$$

$$q_{2} = 8 + (n-1)(6)$$

$$84 = (n-1)(6)$$

$$\frac{84}{6} = n-1$$

$$14 = n-1$$

$$15 = n$$

$$0 = 8$$

$$d =$$

a) Is the sequence arithmetic or geometric?

b) Find an equation to represent the sequence.

c) Find
$$t_{14}$$
.

$$\begin{array}{c}
t_{14} = 200 \left(\frac{1}{8192}\right)^{14-1} \\
= -25 \\
1004
\end{array}$$

Example 5: Complete the geometric sequence:

Example 6: The 50th term of an arithmetic sequence is 238 and the 93rd term is 539. Find a general equation to represent the sequence.

Example 7: Determine the number of terms in the geometric sequence: 5, -10, 20,, -10 240

$$t_{n} = -10240$$
 $t_{n} = -10240$
 $t_{n} = -10240 = 5(-2)^{n-1}$
 $t_{n} = -10240 = 5(-2)^{n-1}$

& there are 12 terms in the sequence.