More Arithmetic and Geometric Series Questions

DO IT NOW:

In an arithmetic sequence, $\mathrm{t}_{3}=25$ and $\mathrm{t}_{9}=43$.
Determine the formula for the general term of this sequence.

$$
\begin{aligned}
t_{n} & =a+(n-1) d \\
25 & =a+(3-1) d \\
\text { (1) } 25 & =a+2 d
\end{aligned}
$$

* Solve using elimination

$$
\text { * sub } d=3 \text { int (1) }
$$

(2) $43=a+8 d$
(1) $\frac{25=a+2 d}{18=6 d}$

$$
26=a+2(3)
$$

$$
3=\alpha
$$

$$
\text { The gheral formula is } t_{n}=19+(n-1)(3)
$$

Example 1: In an amphitheatre, seats are arranged in 50 semicircular rows facing a domed stage. The first row contains 23 seats, and each row contains 4 more seats than the previous row. How many seats are in the amphitheatre?

$$
a=23 \quad d=4 \quad n=50 \quad S_{50}=?
$$

$$
\begin{aligned}
S_{50} & =\frac{n}{2}[2 a+(n-1) d] \\
& =\frac{50}{2}[2(23)+(50-1)(4)] \\
& =25(242) \\
& =6050
\end{aligned}
$$

The amphitheatre has 6050 seats.

Example 2: Determine writhe sum of $-31 \underbrace{-3}_{-4}, \underbrace{-39-\ldots . . .-403}_{-4}$
Start by determining what term \#
last term. $n=$? the last term is.

$$
\begin{aligned}
t_{n} & =a+(n-1) d \\
-403 & =-31+(n-1)(-4) \\
-372 & =(n-1)(-4) \\
93 & =n-1 \\
94 & =n
\end{aligned}
$$

Next, find S94:

$$
\begin{aligned}
S_{n} & =\frac{n}{2}\left(a+t_{1}\right) \\
S_{94} & =\frac{94}{2}(-31-403) \\
& =47(-434) \\
& =-20398
\end{aligned}
$$

Example 3: Determine the sum of the first 20 terms of the arithmetic series in which the 15 th term is 107 and the terms decrease by 3 .

Start by finding the value of ' a ' using $t_{15}=107$

$$
\begin{aligned}
& t_{n}=a+(n-1) d \\
& 107=a+(15-1)(-3) \\
& 107=a-42 \\
& 149=a
\end{aligned}
$$

Now find Sad: $\quad S_{n}=\frac{n}{2}[2 a+(n-1) d]$

$$
\begin{aligned}
& =\frac{20}{2}[2(149)+(20-1)(-3)] \\
& =10(241) \\
& =2410
\end{aligned}
$$

Example 4: The 10th term of an arithmetic series is 34, and the sum of the first 20 terms is 710 . Determine the 25 th term.

$$
\begin{aligned}
& t_{10}=34 \quad s_{20}=710 \quad t_{25}=\text { ? } \\
& \begin{array}{c}
\stackrel{t_{10}}{ } \\
t_{n}=a+(n-1) d \\
34=a+(10-1) d \\
34=a+9 d
\end{array} \\
& 520 \\
& S_{n}=\frac{n}{2}[2 a+(n-1) d] \\
& 710=\frac{20}{2}[2 a+(20-1) d] \\
& 710=10(2 a+19 d) \\
& \text { (2) } 710=20 a+190 d \\
& \text { * Solve using substitution or elimination. * cuts } d=3 \text { into (1) } \\
& 34=a+9(3) \\
& \text { (2) } \longrightarrow 710=20 a+190 d \\
& \text { (1) } x \rightarrow \frac{680=20 a+180 d}{30=10 d} \\
& 3=d \\
& 34=a+27 \\
& 7=a \\
& \text { * no solve for } t_{25} \text { : } t_{n}=a+(n-1) d \\
& t_{25}=7+(25-1)(3) \\
& t_{25}=79
\end{aligned}
$$

Example 5: Determine the sum of the first seven terms of the geometric series in which $\mathrm{t}_{5}=5$ and $\mathrm{t}_{8}=-40$.

$$
\begin{aligned}
& \frac{5 / 16}{3^{s+1}}, \frac{-5 / 8}{2^{n^{d}}}, \frac{\frac{5}{4}}{3^{r d}}, \frac{-5 / 2}{4^{t h}}, \frac{5}{5^{t h}}, \frac{-10}{6^{t h}}, \frac{20}{7^{10}}, \frac{-40}{8^{t h}} \quad a=\frac{5}{16} \\
& S_{n}
\end{aligned}=\frac{a\left(r^{n}-1\right)}{r-1} \quad \text { and } r=-2
$$

Example 5: Determine the sum of the first seven terms of the geometric series in which $\mathrm{t}_{5}=5$ and $\mathrm{t}_{8}=-40$.
method 2

$$
\begin{aligned}
& \frac{t_{s}}{s=a(r)^{5-1}} \\
& s=a(r)^{4} \\
& a=\frac{5}{r^{4}}
\end{aligned}
$$

$t 8$

$$
-40=a(x)^{8-1}
$$

$$
-40=a(r)^{7}
$$

Example 6: Calculate the sum of the geometric series, $960+\underbrace{2}_{\text {? }} 80+240+\ldots .+15$
Method 1: write out full series

$$
\begin{aligned}
& =960+480+240+120+60+30+15 \\
& =1905
\end{aligned}
$$

Method 3: Solve using powers with the same base

$$
\begin{aligned}
& a=960 \quad r=\frac{1}{2} \\
& t_{n}=a(r)^{n-1} \\
& 15=960\left(\frac{1}{2}\right)^{n-1} \quad \text { last torn }=15 \quad\left\{\begin{array} { l }
{ \text { Now solve } S _ { 7 } : } \\
{ \frac { 1 5 } { 9 6 0 } = (\frac { 1 } { 2 }) ^ { n - 1 } } \\
{ \frac { 1 } { 6 4 } = (\frac { 1 } { 2 }) ^ { n - 1 } } \\
{ s _ { n } = \frac { a (r ^ { n } - 1) } { r - 1 } } \\
{ (\frac { 1 } { 2 }) ^ { 6 } = (\frac { 1 } { 2 }) ^ { n - 1 } } \\
{ 6 = n - 1 } \\
{ 7 = n }
\end{array} \quad \left\{\begin{array}{l}
S_{7}=\frac{960\left[\left(\frac{1}{2}\right)^{7}-1\right]}{\left(\frac{1}{2}\right)-1} \\
=\frac{-952.5}{-0.5} \\
=1905
\end{array}\right.\right.
\end{aligned}
$$

Example 7: A tennis tournament has 128 entrants. A player is dropped from the competition after losing one match. Winning players go on to another match. What is the total number of matches that will be played in this tournament?

$$
a=64 \quad r=\frac{1}{2} \text { last term is } 1 \text {. }
$$

Note: The first term is $128 / 2=64$ because 2 players participate in one match. The last term is 1 but we don't know what term number it is.

Stact by determining the of terms in the setes

$$
t_{n}=a(r)^{n-1}
$$

$$
1=64\left(\frac{1}{2}\right)^{n-1}
$$

$$
\frac{1}{64}=\left(\frac{1}{2}\right)^{n-1}
$$

$$
\left(\frac{1}{2}\right)^{6}=\left(\frac{1}{2}\right)^{n-1}
$$

$$
6=n-1
$$

$$
7=n
$$

Next, calculate S_{7}
$S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}$

$$
S_{7}=\frac{64\left[\left(\frac{1}{2}\right)^{7}-1\right]}{\frac{1}{2}-1}
$$

$=\frac{-63.5}{-0.5}$
$=127$
\& 127 matches will be played in the tournomet.

