Pascal's Triangle

a) Complete Pascal's Triangle

b) What patterns do you notice in Pascal's Triangle?

Main Pattern:

Each term in Pascal's Triangle is the sum of the two terms directly above it. The first and last terms in each row are 1 since the only term immediately above them is always a 1.

Other Patterns:

- sum of each row is a power of 2 (sum of nth row is $2 n$, begin count at 0)
- symmetrical down the middle
c) Expand each of the following binomials

$$
(a+b)^{0}=1
$$

$$
(a+b)^{1}=1 a+1 b
$$

$$
(a+b)^{2}=(a+b)(a+b)
$$

$$
=1 a^{2}+a b+a b+1 b^{2}
$$

$$
=1 a^{2}+2 a b+1 b^{2}
$$

$$
(a+b)^{3}=(a+b)(a+b)(a+b)
$$

$$
=(a+b)\left(a^{2}+2 a b+b^{2}\right)
$$

$$
=a^{3}+2 a^{2} b+a b^{2}+a^{2} b+2 a b^{2}+b^{3}
$$

$$
=1 a^{3}+3 a^{2} b+3 a b^{2}+1 b^{3}
$$

$(a+b))^{4}=1 a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+1 b^{4}$

Blaise Pascal (French Mathematician) discovered a pattern in the expansion of $(a+b)^{n} \ldots$. which patterns do you notice?

The coefficients in the expansion of $(a+b)^{n}$ can be found in row n of Pascal's triangle.

In each expansion, the exponents of a start at n and decrease by 1 down to zero, while the exponents of b start at zero and increase by 1 up to n.

In each term, the sum of the exponents of a and b is always n.

Example 1
Expand using the Binomial Theorem:
use row 6 of pascal's triangle

$$
\text { a) }(a+b)^{6^{6}}
$$

b) $(2 x-3)^{5}$

$$
\begin{aligned}
= & 1(2 x)^{5}+5(2 x)^{4}(-3)^{1}+10(2 x)^{3}(-3)^{2}+10(2 x)^{2}(-3)^{3} \\
& +5(2 x)^{1}(-3)^{4}+1(-3)^{5} \\
= & 32 x^{5}-240 x^{4}+720 x^{3}-1080 x^{2}+810 x-243
\end{aligned}
$$

$$
\text { c) } \begin{aligned}
& \left(2 x+3 y^{2}\right)^{5} \\
= & 1(2 x)^{5}\left(3 y^{2}\right)^{0}+5(2 x)^{4}\left(3 y^{2}\right)^{1}+10(2 x)^{3}\left(3 y^{2}\right)^{2} \\
+ & 10(2 x)^{2}\left(3 y^{2}\right)^{3}+5(2 x)^{\prime}\left(3 y^{2}\right)^{4}+1(2 x)^{0}\left(3 y^{2}\right)^{5} \\
= & 1(32)\left(x^{5}\right)(1)+5(16)\left(x^{4}\right)(3)\left(y^{2}\right)+10(8)\left(x^{3}\right)(9)\left(y^{4}\right) \\
+ & 10(4)\left(x^{2}\right)(27)\left(y^{6}\right)+5(2)(x)(81)\left(y^{8}\right)+1(1)(243)\left(y^{10}\right) \\
= & 32 x^{5}+240 x^{4} y^{2}+720 x^{3} y^{4}+1080 x^{2} y^{6}+810 x y^{8}+243 y^{10}
\end{aligned}
$$

$$
\text { d) } \begin{aligned}
& \left(\frac{y}{2}-y^{2}\right)^{4} 4^{n} \\
= & 1\left(\frac{y}{2}\right)^{4}\left(-y^{2}\right)^{0}+4\left(\frac{y}{2}\right)^{3}\left(-y^{2}\right)^{1}+6\left(\frac{y}{2}\right)^{2}\left(-y^{2}\right)^{2} \\
+ & 4\left(\frac{y}{2}\right)^{1}\left(-y^{2}\right)^{3}+1\left(\frac{y}{2}\right)^{0}\left(-y^{2}\right)^{4} \\
= & \frac{y}{16}+4\left(\frac{y^{3}}{8}\right)(-1)\left(y^{2}\right)+6\left(\frac{y^{2}}{4}\right)(1)\left(y^{4}\right) \\
+ & 4\left(\frac{y}{2}\right)(-1)\left(y^{6}\right)+1(1)(1)\left(y^{8}\right) \\
= & \frac{y}{16}-\frac{y^{5}}{2}+\frac{3 y^{6}}{2}-2 y^{7}+y^{8}
\end{aligned}
$$

Example 2
How many terms will there be if you expand $(x+2 y)^{20}$?

$$
20+1=21
$$

number of terms in a binomial expansion is always equal to $n+1$

21 terms

Example 3
a) What is the 2 nd term in the expansion of $(\mathrm{x}+6)^{7}$

$$
\begin{aligned}
& =7(x)^{6}(6)^{1} \\
& =42 x^{6}
\end{aligned}
$$

b) What is the 5 th term in the expansion of $(3 y-4)^{8}$

$$
\begin{aligned}
& =70(3 y)^{4}(-4)^{4} \\
& =70(81)\left(y^{4}\right)(2.56) \\
& =1451520 y^{4}
\end{aligned}
$$

Example 4
a) What is the coefficient of x^{3} in the expansion of

$$
\begin{aligned}
(x+6)^{6} & =20(x)^{3}(6)^{3} \\
& =20 x^{3}(216) \\
& =4320 x^{3}
\end{aligned}
$$

b) What is the coefficient of $y^{4} x^{2}$ in the expansion of $(y+3 x)^{6}$
3_{3}-d term

$$
\begin{aligned}
& =15(y)^{4}(3 x)^{2} \\
& =15\left(y^{4}\right)(9)\left(x^{2}\right) \\
& =135 y^{4} x^{2}
\end{aligned}
$$

