6.2 Recursive Functions

In earlier sections we used function notation to write an explicit formula to determine the value of any term in a sequence. Sometimes it is easier to calculate one term in a sequence using the previous terms.

Recursion formula:

a formula by which each term of a sequence is generated from the preceding term or terms.

Recursive Functions

Functions that get new terms in the sequence by using earlier terms.

 $t_n =$ the value of term 'n' $t_{n-1} =$ the value before t_n

Example 1: Write the first 4 terms of the sequence.

a)
$$t_n = t_{n-1} - 2$$
 where $t_1 = 7$

The first four terms of the sequence are 7, 5, 3, 1.

b) $t_n = 2t_{n-1} + 4$	where $t_1 = 5$	
$t_a = 2t_1 + 4$	$t_3 = 2 t_2 + 4$	$t_4 = 2t_3 + 4$
= a(5) + 4	= 2 (4)+4	= 2(32)+4
= 14	= 32	= 68

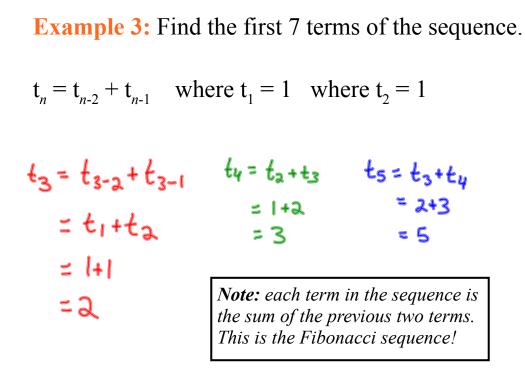
The first four terms of the sequence are 5, 14, 32, 68.

You may also see questions asked in function notation.

Example 2: Find the first 4 terms.

 $f(n)=2f(n-1) - 7 \quad \text{where } f(1) = 2$ $f(2) = 2 \quad f(2) - 7 \quad f(3) = 2 \cdot f(2) - 7 \quad f(4) = 2 \cdot f(3) - 7$ $= 2(2) - 7 \quad = 2(-3) - 7 \quad = 2(-3) - 7$ $= -13 \quad = -33$

The first four terms of the sequence are 2, -3, -13, -33.



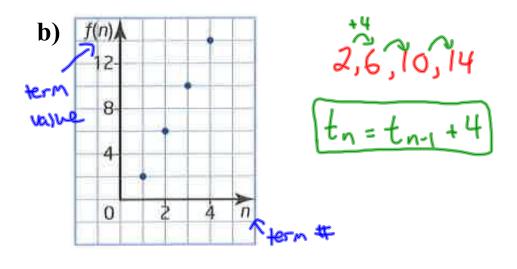
The first seven terms in this sequence are 1, 1, 2, 3, 5, 8, 13.

Example 4:

Write a recursion formula for each sequence

$$t_n = -a \cdot t_{n-1}$$

Look for a pattern in the terms: $t_1 = -3$ $t_2 = t_1 \times (-2)$ $t_3 = t_2 \times (-2)$ $t_4 = t_3 \times (-2)$



$$t_n = t_{n-1} + n$$