6.2 Recursive Functions

In earlier sections we used function notation to write an explicit formula to determine the value of any term in a sequence. Sometimes it is easier to calculate one term in a sequence using the previous terms.

Recursion formula:
a formula by which each term of a sequence is generated from the preceding term or terms.

Recursive Functions

Functions that get new terms in the sequence by using earlier terms.
$\mathrm{t}_{n}=$ the value of term ' n '
$t_{n-1}=$ the value before t_{n}

Example 1: Write the first 4 terms of the sequence.
a) $\mathrm{t}_{n}=\mathrm{t}_{n-1}-2$ where $\mathrm{t}_{1}=7$

$$
\begin{aligned}
& t_{2}=t_{2-1}-2 \quad t_{3}=t_{2-2} \quad t_{4}=t_{3}-2 \\
& =t_{1}-2=5-2=3-2 \\
& =7-2=3=1 \\
& =5
\end{aligned}
$$

b) $\mathrm{t}_{n}=2 \mathrm{t}_{n-1}+4$ where $\mathrm{t}_{1}=5$

$$
\begin{aligned}
t_{2} & =2 t_{1}+4 & t_{3} & =2 t_{2}+4
\end{aligned} \begin{aligned}
t_{4} & =2 t_{3}+4 \\
& =2(5)+4
\end{aligned} \quad \begin{array}{ll}
& =2(14)+4
\end{array} \quad \begin{array}{ll}
& =2(32)+4 \\
& =14
\end{array}
$$

The first four terms of the sequence are 5, 14, 32, 68.

You may also see questions asked in function notation.

Example 2: Find the first 4 terms.

$$
\begin{array}{rlrlrl}
f(n) & =2 f(n-1)-7 & \text { where } f(1)=2 & \\
f(2) & =2 f(1)-7 & f(3) & =2 \cdot f(2)-7 & f(4) & =2 \cdot f(3)-7 \\
& =2(2)-7 & & =2(-3)-7 & & =2(-13)-7 \\
& =-3 & & =-13 & & =-33
\end{array}
$$

The first four terms of the sequence are 2, -3, -13, -33.

Example 3: Find the first 7 terms of the sequence.

$$
\begin{array}{rlrl}
\mathrm{t}_{n} & =\mathrm{t}_{n-2}+\mathrm{t}_{n-1} \quad \text { where } \mathrm{t}_{1}=1 \quad \text { where } \mathrm{t}_{2} & =1 \\
\begin{aligned}
t_{3} & =t_{3-2}+t_{3-1} & t_{4} & =t_{2}+t_{3} \\
& =1+2 & t_{5} & =t_{3}+t_{4} \\
& =t_{1}+t_{2} & & =3+3
\end{aligned} \\
& =1+1 \\
& =2 & \begin{array}{l}
\text { Note: each term in the sequence is } \\
\text { the sum of the previous two terms. } \\
\text { This is the Fibonacci sequence! }
\end{array}
\end{array}
$$

The first seven terms in this sequence are 1, 1, 2, 3, 5, 8, 13.

Example 4:
Write a recursion formula for each sequence

$$
\begin{aligned}
& \text { a) }-3, \frac{1(-2)}{0},-12,24, \ldots \\
& t_{n}=-2 \cdot t_{n-1}
\end{aligned}
$$ the terms:

$$
\begin{aligned}
& t_{1}=-3 \\
& t_{2}=t_{1} \times(-2) \\
& t_{3}=t_{2} \times(-2) \\
& t_{4}=t_{3} \times(-2)
\end{aligned}
$$

$$
\begin{aligned}
& 2,6,10,14 \\
& t_{n}=t_{n-1}+4
\end{aligned}
$$

c) $3, \stackrel{+2}{5,8} \stackrel{+4}{12, \ldots}$

$$
t_{n}=t_{n-1}+n
$$

