Arithmetic and Geometric Sequences

DO IT NOW!

How much can you figure out about this list of numbers?

$$
1,1,2,3,5,8,13,21,34,55,89,144,233, \ldots
$$

ttps://www.youtube.com/watch?v=SjSHVDfXHQ4

Definitions

Formula for general term (explicit formula):
A formula that represents any term in a sequence relative to the term number (n)

Sequence:

an ordered list of numbers identified by a pattern or rule that may stop at some number of continue indefinitely

Ex.

3, 7, 11, 15
$2,6,18,54, \ldots$ the three dots indicate that it continues forever
Note: the terms of a sequence represent the range (y-values) of a function.

Example 1: Write the first three terms of each sequence, given the explicit formula for the nth term of the sequence.
a)

$$
\begin{aligned}
& t_{n}=3 n^{2}-1 \\
& t_{1}=3(1)^{1}-1 \quad t_{2}=3(2)^{2}-1 \quad t_{3}=3(3)^{2}-1 \\
& =2=11=26
\end{aligned}
$$

The first three terms are 2,11,26
b) $t_{n}=\frac{n-1}{n}$

$$
\begin{aligned}
& t_{1}=\frac{1-1}{1} \\
& =0 \\
& t_{2}=\frac{2-1}{2} \quad t_{3}=\frac{3-1}{3} \\
& =\frac{1}{2} \\
& =2 / 3
\end{aligned}
$$

$$
\text { The first three terms are } 0,1 / 2,2 / 3
$$

Arithmetic Sequences

Examples of sequences:
a) $14,18,22,26, \ldots$
b) $\begin{array}{llll}7,3, \\ -4 & -1, & -5 & -4\end{array}$

These are called arithmetic sequences because they increase by a constant difference (+ or -)

Arithmetic Sequences

Formula for General Term of an Arithmetic Sequence

$$
t_{n}=a+(n-1) d
$$

n: the term number
$\mathbf{t}_{\mathbf{n}}$: a term in the sequence
d: the common difference

Example 2
a) Determine a formula for the general term of the following arithmetic sequence.

$$
\begin{aligned}
& 14,18,22,26, \ldots \\
& a=14 \\
& d=4
\end{aligned}
$$

$$
\begin{aligned}
& t_{n}=a+(n-1) d \\
& t_{n}=14+(n-1)(4)
\end{aligned}
$$

b) What is the value of t_{30}

$$
\begin{aligned}
t_{30} & =14+(30-1)(4) \\
& =14+116 \\
& =130
\end{aligned}
$$

Example 3:
a) Determine a formula for the general term of the following arithmetic sequence.

$$
\begin{array}{ll}
7,3,-1,-5, \ldots & t_{n}=a+(n-1) d \\
a=7 & t_{n}=7+(n-1)(-4) \\
d=-4 &
\end{array}
$$

b) What is the value of t_{41}

$$
\begin{aligned}
t_{41} & =7+(41-1)(-4) \\
& =7-160 \\
& =-153
\end{aligned}
$$

Geometric Sequences

Examples of sequences:
a) $2,6,18,54, \ldots$
b) $80,40,20,10, \ldots \quad$ * No division is used 米

$$
\times \frac{1}{2}
$$

These are called geometric sequences because the ratio of consecutive terms is constant.

Increase/decrease by a constant multiple

Geometric Sequences

Formula for the General Term of a Geometric Sequence

$$
t_{n}=a \cdot r^{n-1}
$$

n: term number

$\mathbf{t}_{\mathbf{n}}$: a term in the sequence
$\mathbf{a :}$ the first term
\mathbf{r} : the constant multiple
Note: no division is used $\rightarrow \div 2=\times \frac{1}{2}$

Example 4: Determine a formula for the general term of the following geometric sequence.

$$
\begin{aligned}
2,6,18,54,162, \ldots \\
a=2 \\
r=3
\end{aligned} \quad \begin{aligned}
t_{n} & =a \cdot r^{n-1} \\
& =2(3)^{n-1}
\end{aligned}
$$

b) What is the value of t_{9}

$$
\begin{aligned}
t_{9} & =2(3)^{9-1} \\
& =13122
\end{aligned}
$$

Example 5: Determine a formula for the general term of the following geometric sequence.

$$
\begin{array}{rlr}
270 & \underbrace{90}_{\times \frac{1}{3}}, 30,10, \ldots & t_{n}=a \cdot r^{n-1} \\
a & =270 & t_{n}=270\left(\frac{1}{3}\right)^{n-1} \\
r & =\frac{1}{3} &
\end{array}
$$

b) What is the value of t_{9}

$$
\begin{aligned}
t_{9} & =270\left(\frac{1}{3}\right)^{9.1} \\
& =270\left(\frac{1}{3^{8}}\right) \\
& =270\left(\frac{1}{6561}\right) \\
& =\frac{10}{243}
\end{aligned}
$$

