Arithmetic and Geometric Series

Definitions

Formula for general term (explicit formula):
A formula that represents any term in a sequence relative to the term number (n)

Sequence:

an ordered list of numbers identified by a pattern or rule that may stop at some number of continue indefinitely

Arithmetic Sequence:

sequence in which the difference between consecutive terms is a constant

Geometric Sequence:
sequence in which the ratio of consecutive terms is constant

Series:
the indicated sum of the terms of a sequence

Example 1: Find S_{4} of the sequence represented by:

$$
\begin{aligned}
& \begin{aligned}
& \mathrm{t}_{n}=1+(n-1) 3 \quad \begin{aligned}
\text { sum of the first } 4 \text { terms } \\
\text { of the sequence }
\end{aligned} \\
& \begin{aligned}
t_{1} & =1+(1-1)(3) \quad t_{4}=t_{1}+t_{2}+t_{3}+t_{4} \\
& =1+(2-1)(3) \\
& =4
\end{aligned} \\
& \begin{aligned}
t_{3} & =1+(3-1)(3) \quad \begin{aligned}
t_{4} & =1+(4-1)(3) \\
& =7 \\
& =10
\end{aligned} \\
&
\end{aligned} \\
& S_{4}=1+4+7+10 \\
&=22
\end{aligned}
\end{aligned}
$$

Arithmetic Series
general form

$$
S_{n}=\frac{n}{2}[2 a+(n-1) d]
$$

because the general form for an arithmetic sequence is

$$
t n=a+(n-1) d
$$

OR we can rewrite S_{n} as:

$$
S_{n}=\frac{n}{2}\left[a+t_{n}\right]
$$

Example 2: For the series $\underbrace{\text { and }}_{-\underset{+2}{1+5}+7+\ldots \text { find } S_{23}, ~}$

$$
\begin{aligned}
S_{n} & =\frac{n}{2}[2 a+(n-1) d] \\
S_{23} & =\frac{23}{2}[2(1)+(23-1)(2)] \\
& =\frac{23}{2}(46) \\
& =529
\end{aligned}
$$

Example 3: An arithmetic series with 52 terms starts with -7 and ends with 102. Find the sum of the series.

Note: Since we know t_{52}, it would be easier to use this version of the formula...

$$
\begin{aligned}
S_{52} & =\frac{52}{2}(-7+102) \\
& =26(95) \\
& =2470
\end{aligned}
$$

Geometric Series
 general form

$$
S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}
$$

Example 4: For the geometric sequence $-1+2-4+8-16, \ldots$
a) Find S_{5}.
$x(-2)$
$a=-1$

$$
\begin{aligned}
S_{5} & =-1+2-4+8-16 \\
& =-11
\end{aligned}
$$

b) Find $S_{13} \quad S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}$

$$
\begin{aligned}
S_{13} & =\frac{-1\left[(-2)^{13}-1\right]}{-2-1} \\
& =\frac{8193}{-3} \\
& =-2731
\end{aligned}
$$

Example 5: A student is offered a job with a math teacher that will last 20 hours. It pays $\$ 4.75$ for the first hour, $\$ 5$ for the second hour, $\$ 5.25$ for the next hour, and so on. How much will the student earn in total?

$$
\begin{array}{ll}
a=4.75 & S_{n}
\end{array}=\frac{n}{2}[2 a+(n-1) d]
$$

The student will be paid $\$ 142.50$ for 20 how rs of work.

