Unit 1

MPM2D

Jensen

1) Solve each linear system by graphing.

a)
$$\ell_1$$
: $y = 4x - 5$
 ℓ_2 : $y = \frac{2}{3}x + 5$

Solution: x=3, y=7

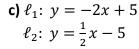
Line 1

y = 4x - 5 $y = \frac{3}{3}x + 5$ $slape = m = \frac{4}{3}$

$$5lape = M = \frac{2}{3}$$

$$y-int=b=5$$

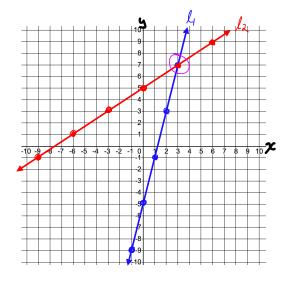
b)
$$\ell_1$$
: $3x + y = 1$ ℓ_2 : $x + 4y = 4$


Solution: x=0, y=

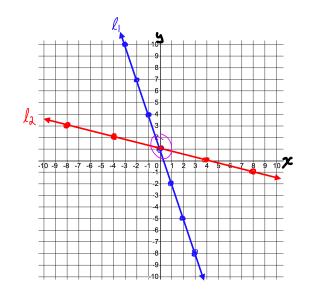
Line 1 3x+y=1 y=-3x+1 y=-x+4 y=-x+4 y=-x+1 y=-x+1 y=-x+1 y=-x+13244=1

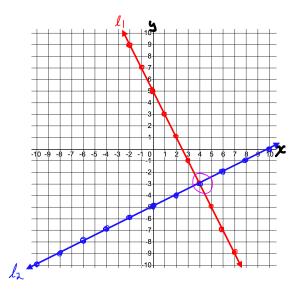
$$slope=M=-\frac{3}{1}$$

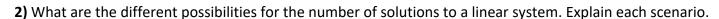
$$-1$$


slope =
$$n = \frac{3}{4}$$

y-int = $6 = 1$




solution: 2=4, y=-3

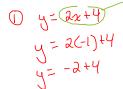

$$u = \frac{1}{3}x - 5$$

$$y=-ax+5$$
 $y=\frac{1}{2}x-5$
 $slope=m=\frac{1}{2}$ $slope=m=\frac{1}{2}$

1 solution if the lines have different slopes.

· O solutions if the lines are parallel (some slope) but have different y-intercepts.

farallel and distinct.


· Infinitely many solutions if the lines have the same slope and same y-intercepts.

Parallel and coincident

3) Solve each linear system using the method of substitution.

a)
$$\ell_1$$
: $y = 2x + 4$
 ℓ_2 : $x - 4y = -9$

$$2 x - 4y = -9$$

$$x - 4(2x + 4) = -9$$

$$x - 8x - 16 = -9$$

$$-7x = 7$$

$$x = -1$$

solution: $\chi = -1, y = 2$

b)
$$\ell_1$$
: $2x = 7 - y$
 ℓ_2 : $3x - 2y = 21$

Solution: 10=5, 4=-3

c)
$$\ell_1$$
: $3m + 9n = 1$
 ℓ_2 : $m + 3n = 2$

$$\begin{array}{ccc}
3m+9n = 1 \\
3(a-3n)+9n = 1 \\
6-9n+9n = 1 \\
0n = -5
\end{array}$$

(2)
$$n+3n=2$$

 $m=2-3n$

So NO solutions.

The lines are parallel and distinct.

d)
$$\ell_1$$
: $2x - 3y = 6$
 ℓ_2 : $2x - y = 7$

1)
$$2x-3y=6$$
 $2x-3(2x-7)=6$
 $2x-6x+21=6$
 $-4x=-15$
 $x=\frac{15}{4}$

Solution: $\chi = \frac{15}{4}$) $y = \frac{1}{3}$

e)
$$\ell_1$$
: $3x - 8 = -2y$
 ℓ_2 : $2x + 3y = 7$

①
$$3x - 8 = -\lambda y$$
 ② $2x + 3y = 7$

$$-\frac{3}{2}x + 4 = y$$
 $2x + 3(-\frac{3}{2}x + 1)$

$$-\frac{3}{2}(2) + 4 = y$$
 $2x - \frac{9}{4}x + 12 = y$

$$-3 + 4 = y$$

$$-3 + 4 = y$$

$$-\frac{5}{2}x = -5$$

(2)
$$2x + 3y = 7$$

 $2x + 3(-\frac{3}{2}x + 4) = 7$
 $2x - \frac{2}{3}x + 12 = 7$
 $\frac{4}{5}x - \frac{2}{3}x = -5$
 $-\frac{5}{3}x = -5$
 $-5x = -10$
 $x = 2$

Solution:
$$x=a, y=1$$

f)
$$\ell_1$$
: $2x = 6 - y$
 ℓ_2 : $3x - 2y = 2$

①
$$2x = 6 - 4$$

 $y = 6 - 2x$
 $y = 6 - 2(2)$
 $y = 2$

2
$$3x-2y=2$$

 $3x-a(6-2x)=2$
 $3x-12+4x=2$
 $7x=14$
 $x=a$

solution: X=2, 4=2

4) Solve each linear system using the method of elimination.

a)
$$\ell_1$$
: $x - y = 14$
 ℓ_2 : $2x + 5y = -7$

$$2 \times 0 \quad 2x - 2y = 28$$

$$2 \times 45y = -7 - 2 \times -y = 14$$

$$-7y = 35$$

$$y = -5$$

$$x + 5y = -7 - 2 \times -y = 14$$

$$x - (-5) = 14$$

$$x + 5 = 14$$

$$x = 9$$

solution:
$$\chi=9$$
, $y=-5$

c)
$$\ell_1$$
: $3x + 4y = 17$
 ℓ_2 : $7x - 2y = 17$

①
$$3x + 4y = 17$$
 Sub $x = 3$ into (
 $2x \otimes 14x - 4y = 34 + 3(3) + 4y = 17$
 $17x = 51$ $9 + 4y = 17$
 $x = 3$ $4y = 8$

sub
$$x=3$$
 into 0
 $3(3)+4y=17$
 $9+4y=17$
 $4y=8$

b)
$$\ell_1$$
: $9x - 3y = 15$
 ℓ_2 : $3x - y = 5$

Infinitely many solutions. The lines are parallel and coincident.

d)
$$\ell_1$$
: $2x + 5y = 18$
 ℓ_2 : $3x + 5y - 17 = 0$

①
$$2x + 5y = 18$$
 $546 x = -1$ into (2) $3x + 5y = 17$ $2(-1) + 5y = 18$ $-2 + 5y = 18$ $x = -1$ $5y = 20$

Solution: $\chi=-1$, y=4

e)
$$\ell_1$$
: $3x = 34 - 2y$
 ℓ_2 : $5x - 3y = -13$

$$0 3x + 2y = 34$$

$$3k 0 9x + 6y = 102$$

$$2k 0 10x - 6y = -26 + 5(4) - 3y = -13$$

$$19x = 76$$

$$20 - 3y = -13$$

$$20 - 3y = -13$$

$$21 - 3y = -13$$

sub
$$x=4$$
 into 2
 $5x-3y=-13$
 $5(4)-3y=-13$
 $20-3y=-13$
 $33=3y$
 $y=11$

f)
$$\ell_1$$
: $5x + 2y = 5$
 ℓ_2 : $2x + 3y = 13$

solution:
$$\chi=-1$$
, $y=5$

5) Petr has \$5000 invested in two plans. One plan pays 5% simple interest per year and the other pays 8%. At the end of the year, Petr receives a total of \$340 in interest. How much did he invest in each plan?

$$x = 2000$$

 $x + 3000 = 5000$
 $x + 3000 = 5000$

solution: Petr invested \$ 2000 at 5% and \$3000 at 8%.

6) A physics contest has 30 multiple choice questions. A correct answer gains 4 points, while a wrong answer loses 1 point. Rolly answered every question and scored 55 points. How many questions did he answer correctly?

$$\chi = \# correct$$

 $y = \# wrong$

$$\chi = \# correct$$
 $y = \# wrong$
 $2 \frac{4x - y = 55}{5x = 85}$
 $x = 17$

solution: holly got 17 correct.

7) One lawn fertilizer is 24% nitrogen, and another is 12% nitrogen. How much of each fertilizer should be mixed to obtain 100 kg of fertilizer that is 21% nitrogen?

$$\chi$$
 = amount of 24% nitrogen (1) $\chi + y = 100$ (2) $0.24\chi + 0.12y = 0.21(100)$ Sub $\chi = 75$ into (1) $\chi = 200$ (100x) $\chi = 24\chi + 12\chi = 2100$ $\chi = 1200$ $\chi = 12\chi = 1200$ $\chi = 1$

8) A small plane took 3 hours to fly 960 km from Ottawa to Halifax with a tail wind. On the return trip, flying into the wind, the plane took 4 hours. Find the wind speed and the speed of the plane in still air.

y = wind speed.

Renember:

$$\frac{1}{4} \times 0 \times 49$$
 $\frac{1}{4} \times 0 \times 9$

X = speed of plane in still air

①
$$3(x+y) = 960$$
 ② $4(x-y) = 960$
 $3x+3y = 960$ $4x-4y = 960$

$$\frac{1}{3} \times 0 \times + y = 320 \qquad \text{sub } y = 40 \text{ into } 0$$

$$\frac{1}{4} \times 0 \times - y = 240 - x + y = 320$$

$$\frac{1}{4} \times 0 \times - y = 240 - x + y = 320$$

$$\frac{1}{4} \times 0 \times - y = 240 - x + y = 320$$

$$\frac{1}{4} \times 0 \times - y = 240 - x + y = 320$$

$$\frac{1}{4} \times 0 \times - y = 240 - x + y = 320$$

$$\frac{1}{4} \times 0 \times - y = 240 - x + y = 320$$

$$\frac{1}{4} \times 0 \times - y = 240 - x + y = 320$$

$$\frac{1}{4} \times 0 \times - y = 240 - x + y = 320$$

$$\frac{1}{4} \times 0 \times - y = 240 - x + y = 320$$

$$\frac{1}{4} \times 0 \times - y = 240 - x + y = 320$$

$$\frac{1}{4} \times 0 \times - y = 240 - x + y = 320$$

$$\frac{1}{4} \times 0 \times - y = 240 - x + y = 320$$

$$\frac{1}{4} \times 0 \times - y = 240 - x + y = 320$$

$$\frac{1}{4} \times 0 \times - y = 240 - x + y = 320$$

$$\frac{1}{4} \times 0 \times - y = 240 - x + y = 320$$

$$\frac{1}{4} \times 0 \times - y = 240 - x + y = 320$$

$$\frac{1}{4} \times 0 \times - y = 240 - x + y = 320$$

$$\frac{1}{4} \times 0 \times - y = 240 - x + y = 320$$

$$\frac{1}{4} \times 0 \times - y = 320$$

9) The Outdoors Club held a car wash to raise money. They washed cars for \$5 each and vans for \$7 each. They washed 45 vehicles and earned \$243. How many of each type of vehicle did they wash?

$$\chi = \#$$
 of cars
$$y = \#$$
 of vans
$$y = \#$$
 of cars
$$y = \#$$
 sub $y = \%$ into 0
$$y = \#$$
 into 0

Answers

1)a)
$$x = 3$$
, $y = 7$ **b)** $x = 0$, $y = 1$ **c)** $x = 4$, $y = -3$

2) no solutions if the lines are parallel and distinct; 1 solution if the lines are not parallel; infinitely many solutions if the lines are parallel and coincident.

3)a)
$$x = -1$$
, $y = 2$ b) $x = 5$, $y = -3$ c) no solutions d) $x = \frac{15}{4}$, $y = \frac{1}{2}$ e) $x = 2$, $y = 1$ f) $x = 2$, $y = 2$

4)a)
$$(9,-5)$$
 b) infinite solutions **c)** $(3,2)$ **d)** $(-1,4)$ **e)** $(4,11)$ **f)** $(-1,5)$

- 5) \$2000 at 5% and \$3000 at 8%
- **6)** 17
- **7)** 75 kg of 24% nitrogen, 25 kg of 12% nitrogen
- 8) wind 40 km/h; plane in still air 280 km/h
- 9) 36 cars and 9 vans