MPM2D
; Jensen

1) Solve each linear system by graphing.

$$
\text { a) } \begin{aligned}
\ell_{1}: y & =4 x-5 \\
\ell_{2}: y & =\frac{2}{3} x+5
\end{aligned}
$$

$$
\text { solution: } x=3, y=7
$$

Line 1

Line 2
$y=4 x-5$
$y=\frac{2}{3} x+5$
slope $=n=\frac{4}{1}$
slope $=m=\frac{2}{3}$
y-int $=b=-5 \quad y$-int $=b=5$

$$
\text { b) } \begin{aligned}
\ell_{1}: 3 x+y & =1 \\
\ell_{2}: x+4 y & =4
\end{aligned}
$$

```
Solution: }x=0,y=
```

$$
\begin{array}{ll}
\text { Line 1 } & \text { Line } 2 \\
\begin{array}{c}
3 x+y=1 \\
y=-3 x+1
\end{array} & 4 y=-x+4 \\
\text { slope }=m=-\frac{3}{1} & y=-\frac{1}{4} x+1 \\
y-\text {-int }=b=1 & \text { slope }=n=-1 / 4 \\
y \text {-int }=6=1
\end{array}
$$

c) $\ell_{1}: y=-2 x+5$ $\ell_{2}: y=\frac{1}{2} x-5$

solution: $x=4, y=-3$

$$
\begin{array}{ll}
\text { Line 1 } & \text { Line 2 } \\
y=-2 x+5 & y=\frac{1}{2} x-5 \\
\text { slope }=m=-\frac{2}{1} & \text { slope }=n=\frac{1}{2} \\
y \text {-int }=t=5 & y \text {-int }=b=-5
\end{array}
$$

2) What are the different possibilities for the number of solutions to a linear system. Explain each scenario.

- 1 solution if the lines have different slopes.

- O solutions if the lines are parallel (same slope) but have different y-intercepts.

- Infinitely many solutions if the lines have the same slope and sane y-intercepts.

Parallel and coincident
3) Solve each linear system using the method of substitution.
a) $\ell_{1}: y=2 x+4$
b) $\ell_{1}: 2 x=7-y$
$\ell_{2}: x-4 y=-9$
$\ell_{2}: 3 x-2 y=21$
(1) $y=(2 x+4)$
(2) $\begin{aligned} & x-4 y=-9 \\ & x-4(2 x+4)=-9 \\ & x-8 x-16=-9 \\ & -7 x=7 \\ & x=-1\end{aligned}$
(1) $2 x=7-y$
$y=7-2 x$
$y=7-2(5)$
$y=-3$
(2) $3 x-2 y=21$
$3 x-2(7-2 x)=21$
$3 x-14+4 x=21$

$$
\begin{aligned}
7 x & =35 \\
x & =5
\end{aligned}
$$

solution: $x=-1, y=2$

$$
\text { solution: } x=5, y=-3
$$

c) $\begin{gathered}\ell_{1}: 3 m+9 n=1 \\ \ell_{2}: m+3 n=2\end{gathered}$
(1) $3 m+9 n=1$
$3(2-3 n)+9 n=1$
$6-9 n+9 n=1$

$$
o_{n}=-5
$$

BO NO solutions.
The lines are parallel and distinct.
d) $\ell_{1}: 2 x-3 y=6$
$\ell_{2}: 2 x-y=7$

$$
\begin{array}{ll}
\text { (1) } 2 x-3 y=6 & \text { (2) } 2 x-y=7 \\
2 x-3(2 x-7)=6 & 2 x-7=y \\
2 x-6 x+21=6 & 2\left(\frac{15}{4}\right)-7=y \\
-4 x=-15 & \frac{15}{2}-\frac{14}{2}=y \\
x=\frac{15}{4} & \frac{1}{2}=y
\end{array}
$$

$$
\text { Solution: } x=\frac{15}{4}, y=\frac{1}{2}
$$

e) $\ell_{1}: 3 x-8=-2 y$
f) $\ell_{1}: 2 x=6-y$
$\ell_{2}: 2 x+3 y=7$

$$
\ell_{2}: 3 x-2 y=2
$$

(1) $3 x-8=-2 y$
(2) $2 x+3 y=7$
$-\frac{3}{2} x+4=y$

$$
2 x+3\left(-\frac{3}{2} x+4\right)=7
$$

$-\frac{3}{2}(2)+4=y$

$$
2 x-\frac{9}{2} x+12=7
$$

$-3+4=y$
$y=1$

$$
\begin{gathered}
\frac{4}{2} x-\frac{9}{2} x=-5 \\
-\frac{5}{2} x=-5 \\
-5 x=-10 \\
x=2
\end{gathered}
$$

(2) $3 x-2 y=2$
$y=6-2 x$ $3 x-2(6-2 x)=2$
$y=6-2(2)$
$y=2$ $3 x-12+4 x=2$
$7 x=14$
$x=2$

$$
\text { solution: } x=2, y=2
$$

Solution: $x=2, y=1$

4) Solve each linear system using the method of elimination.

a) $\ell_{1}: x-y=14$
$\ell_{2}: 2 x+5 y=-7$
b) $\ell_{1}: 9 x-3 y=15$
$\ell_{2}: 3 x-y=5$
$2 \times$ (1) $2 x-2 y=28 \quad$ sulo $y=-5$ into (1)
(2) $\begin{array}{rl}2 x+5 y & =-7 \\ -7 y & =35 \\ y=-5 & x-y=14 \\ x-(-5)=14 \\ x+5=14 \\ x=9\end{array}$

$$
\text { Solution: } x=9, y=-5
$$

Infinitely many solutions.
The lines are parallel and coincident
c) $\ell_{1}: 3 x+4 y=17$
d) $\ell_{1}: 2 x+5 y=18$
$\ell_{2}: 7 x-2 y=17$
$\ell_{2}: 3 x+5 y-17=0$
(1) $3 x+4 y=17 \quad$ subs $x=3$ into (1)
(1) $2 x+5 y=18 \quad$ silo $x=-1$ into (1)
$\begin{array}{cc}2 x(2) \frac{14 x-4 y=34+}{3(3)+4 y}=17 \\ 17 x=51 & 9+4 y=17\end{array}$
(2) $3 x+5 y=17-\quad 2(-1)+5 y=18$
$4 y=8$
$y=2$
$-2+5 y=18$
$5 y=20$
$y=4$

$$
\text { Solution: } x=3, y=2
$$

Solution: $x=-1, y=4$

e) $\ell_{1}: 3 x=34-2 y$
f) $\ell_{1}: 5 x+2 y=5$
$\ell_{2}: 5 x-3 y=-13$
$\ell_{2}: 2 x+3 y=13$
(1) $3 x+2 y=34$
$3 x(1) 9 x+6 y=102$
$2 x(2) \frac{10 x-6 y=-26+}{19 x}$
$19 x=76$ $x=4$
sub $x=4$ into (2)

$$
\begin{gathered}
5 x-3 y=-13 \\
5(4)-3 y=-13 \\
20-3 y=-13 \\
33=3 y \\
y=11
\end{gathered}
$$

$3 x$ (1) $15 x+6 y=15 \quad$ sulo $x=-1$ into (2)
$2 \times(2) \begin{gathered}\frac{4 x+6 y=26-}{11 x}=-11 \\ x=-1\end{gathered}$

$$
\begin{gathered}
2 x+3 y=13 \\
2(-1)+3 y=13 \\
-2+3 y=13 \\
3 y=15 \\
y=5
\end{gathered}
$$

$$
\text { solution: } x=4, y=11
$$

$$
\text { solution: } x=-1, y=5
$$

5) Per has $\$ 5000$ invested in two plans. One plan pays 5% simple interest per year and the other pays 8%. At the end of the year, Petr receives a total of $\$ 340$ in interest. How much did he invest in each plan?
$x=$ amount at 5% (1) $x+y=5000$
$y=$ amount at 8%
(2) $0.05 x+0.08 y=340$
$100 x$ (2) $5 x+8 y=34000$
$5 \times(1) \quad \begin{aligned} 5 x+5 y & =25000- \\ 3 y & =9000\end{aligned}$

$$
y=3000
$$

Solution: pets invested $\$ 2000$ at 5% and \$3000 of 8%.
6) A physics contest has 30 multiple choice questions. A correct answer gains 4 points, while a wrong answer loses 1 point. RoIly answered every question and scored 55 points. How many questions did he answer correctly?

Solution: holy got 17 correct
7) One lawn fertilizer is 24% nitrogen, and another is 12% nitrogen. How much of each fertilizer should be mixed to obtain 100 kg of fertilizer that is 21% nitrogen?
$x=$ amount of 24% nitrogen
(1) $x+y=100$
(2) $0.24 x+0.12 y=0.21(100)$

Solo $x=75$ into (1) $y=$ amaint of 12% nitrogen

$$
\begin{array}{ll}
100 \times(2) & 24 x+12 y=2100 \\
12 \times(1) \quad & x+y=100 \\
& 75+y=100 \\
& y=25
\end{array}
$$

$$
\begin{aligned}
& \text { Solution: } 75 \mathrm{Kg} \text { of } 24 \% \text { nitrogen and } 25 \mathrm{~kg} \text { of } 12 \% \text { should } \\
& \text { be nixed. }
\end{aligned}
$$

8) A small plane took 3 hours to fly 960 km from Ottawa to Halifax with a tail wind. On the return trip, flying into the wind, the plane took 4 hours. Find the wind speed and the speed of the plane in still air.
$x=$ speed of plane in still air
(1) $3(x+y)=960$
$3 x+3 y=960$
(2) $4(x-y)=960$
$y=$ wind speed.
$4 x-4 y=960$
Remember:
distance $=$ speed \times time

$$
\begin{aligned}
& \frac{1}{3} \times(1) x+y=320 \quad \text { silo } y=40 \text { into (1) } \\
& \begin{aligned}
& \frac{1}{4} \times(2) \frac{x-y}{}=240- \\
& 2 y=80 \\
& y=40
\end{aligned} \\
& x+y=320 \\
& x+40=320 \\
& x=280 \\
& \text { Solution: The speed of the plane in still air is } 280 \mathrm{~km} / \mathrm{h} \\
& \text { The speed of the wind is } 40 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

9) The Outdoors Club held a car wash to raise money. They washed cars for $\$ 5$ each and vans for $\$ 7$ each. They washed 45 vehicles and earned $\$ 243$. How many of each type of vehicle did they wash?
$x=\#$ of cars
(1) $x+y=45$
$y=\#$ of vans

$$
\begin{aligned}
& \text { (2) } 5 x+7 y=243 \\
& 5 x \text { (1) } \frac{5 x+5 y=225-}{2 y=18} \\
& \text { sumo } y=9 \text { into (1) } \\
& \text { (2) } \begin{array}{l}
5 x+7 y=243
\end{array} \quad \text { silo } y=9 \text { into (1) } \\
& \begin{array}{c}
2 y=18 \\
y=9
\end{array} \\
& x+y=45 \\
& x+9=45 \\
& x=36 \\
& \text { Solution: They washed } 36 \text { cars and } 9 \text { vans }
\end{aligned}
$$

Answers

1)a) $x=3, y=7$ b) $x=0, y=1$ c) $x=4, y=-3$
2) no solutions if the lines are parallel and distinct; 1 solution if the lines are not parallel; infinitely many solutions if the lines are parallel and coincident.
3)a) $x=-1, y=2$ b) $x=5, y=-3$ c) no solutions d) $x=\frac{15}{4}, y=\frac{1}{2}$ e) $x=2, y=1$ f) $x=2, y=2$
4)a) $(9,-5)$ b) infinite solutions c) $(3,2)$ d) $(-1,4)$ e) $(4,11)$ f) $(-1,5)$
5) $\$ 2000$ at 5% and $\$ 3000$ at 8%
6) 17
7) 75 kg of 24% nitrogen, 25 kg of 12% nitrogen
8) wind $40 \mathrm{~km} / \mathrm{h}$; plane in still air $280 \mathrm{~km} / \mathrm{h}$
9) 36 cars and 9 vans

