Unit 4 - Quadratics

1) Complete the following charts:

a)

Property	$y=(x-5)^2+4$
Vertex	
axis of symmetry	
stretch or compression	
(a value)	
direction of opening	
values that x may take	
values that y may take	

Property	$y = -3(x+1)^2 - 3$
Vertex	
axis of symmetry	
stretch or compression	
(a value)	
direction of opening	
values that x may take	
values that y may take	

b)

Property	$y = \frac{1}{3}(x+1)^2 - 4$
Vertex	
axis of symmetry	
stretch or compression	
(a value)	
direction of opening	
values that x may take	
values that y may take	

Property	$y = 4x^2 - 2$
Vertex	
axis of symmetry	
stretch or compression	
(a value)	
direction of opening	
values that x may take	
values that y may take	

2) Describe the transformations to the graphs of the following quadratic relations compared to the graph of $y = x^2$

c)

d)

a)
$$y = -\frac{1}{4}(x+3)^2 - 4$$

b) $y = 7(x-7)^2 + 2$

3) The graph of $y = x^2$ is compressed vertically by a factor of 1/2, reflected in the x-axis, and then translated 2 units down and 2 units right.

- **a)** Write the equation of the parabola in vertex form:
- **b)** State the vertex:
- c) State the axis of symmetry:
- d) Graph the parabola by finding points to the left and right of the vertex (label the vertex)

x	У

4) Write the equation of each of the following parabolas in vertex form, $y=a(x-h)^2+k$

Equation in vertex form: _____

b)

Equation in vertex form: _____

5) Rewrite each equation in vertex form by completing the square. Then state the vertex and if it is a max or min point.

a)
$$y = x^2 + 6x + 13$$

b) $y = 2x^2 - 24x + 5$
c) $y = -4x^2 - 8x + 1$

6) State the <u>x-intercepts</u> of the following

a)
$$y = (x+3)(x+2)$$

b) $y = \frac{1}{2}(2x+1)(x-30)$

b)

- 8) For the quadratic relation y = 2(x+4)(x-2):
- **a.** What are the x-intercepts?
- **b.** What is the axis of symmetry?

9) For the quadratic relation y = 2(x+5)(x+1)

a. What are the x-intercepts?

b. What is the axis of symmetry?

c. What is the vertex?

c. What is the vertex?

d. Sketch the graph (label the vertex and x-intercepts)

d. Sketch the graph(label the x-intercepts and vertex)

Unit 3 - Factoring

10) Expand and simplify the following

a)
$$(x-2)(x+4)$$

e) $2(2x+1)(x-3)$

b) (x+6)(x+7)

f) (x-5)(x+5)

a) 3(x+4)(x-1)

g) (x+4)²

b) (x-10)(x-6)

11) Fully factor each of the following

a)
$$5x - 35y$$
 b) $4x^2y^3 - 16x^3y^3 + 8xy^5$

c)
$$x^2 - 7x + 10$$
 d) $2x^2 - 4x - 48$

e) $x^2 + 8xy + 15y^2$

f) $2x^2 - 5x - 12$

g) $12x^2 + 11x - 5$

h) $x^4 - 3x^2 - 10$

<u> Unit 5 – Solving Quadratic Equations</u>

12) Solve each of the following quadratics by factoring

a)
$$x^2 - x - 12 = 0$$
 b) $x^2 + 3x = 18$

c)
$$x^2 + 11x + 24 = 0$$
 d) $2x^2 - 2x - 60$

e) x² - 81 = 0

f) $2x^2 + 7x + 3 = 0$

= 0

g) $6x^2 + 11x + 4 = 0$

h) $6x^2 + 10x = 4$

13) Use the quadratic formula to solve the following quadratic equations

a) $x^2 - x - 4 = 0$

d) $-3x^2 + 4x = -1$

b) $7x^2 - 2x - 2 = 0$

e) $5x^2 + 2x + 6 = 0$

c) $2x^2 + 8x = 3$

f) 9x² -24x + 16 = 0

14) For the quadratic $y = 2x^2 - 11x - 6$

a) Find the *x*-intercepts

b) Find the axis of symmetry (x- coordinate of vertex)

c) Find the vertex

d) graph (label x-intercepts and vertex)

- 15) The path of a rocket is given by the relation h = -5(x 2)(x 12), where x represents the horizontal distance, in meters, the rocket travels and h represents the height, in meters, above the ground of the rocket at this horizontal distance.
 - a) At what horizontal distance does the rocket reach its maximum height?
 - **b)** What is the maximum height of the rocket?
 - c) At what horizontal distance does the rocket hit the ground?

16) The path of a rocket can be modeled by the equation $h=-4.9t^2 + 60t + 3$ where 'h' is the height of the rocket in meters, and 't' is the time in seconds after the rocket is launched.

- a) When does the rocket land?
- b) At what time does the rocket reach its maximum height? (axis of symmetry)
- c) What is the maximum height?

17) Twice the width of a rectangle is 3 m more than the length. If the area of the rectangle is 209 m^2 , find the dimensions of the rectangle.

18) An electronics store sells an average of 60 entertainment systems per month at an average of \$800 more than the cost price. For every \$20 increase in the selling price, the store sells one fewer system. What amount over the cost price will maximize revenue?

Answers

- a) (5,4), x=5, none, up, any real #, y > or = 4 b) (-1,-4), x=-1, compressed by 1/3, up, any real #, y > or = -4
 c) (-1,-3), x=-1, stretched by 3, down, any real #, y < or = -3 d) (0,-2), x=0, stretched by 4, up, any real #, y > or = -2
- 2. a) compressed by ¼, reflected in x-axis, left 3, down 4 b) stretch by 7, right 7, up 2
- **3.** a) $y=-1/2(x-2)^2-2$ b) (2,-2) c) x=2
- **4.** a) $y=2(x-1)^2-4$ b) $y=-1/3(x+3)^2+2$
- 5. a) (-3,4) min b) (6,-67) min c) (-1,5) max
- 6. a) -3 and -2 b) -1/2 and 30
- 7. a) y=1/2(x+2)(x-4) b) y=-1/2(x+1)(x+5)
- 8. a) -4 and 2 b) x=-1 c) (-1,-18)
- **9.** a) -5 and -1 b) x=-3 c) (-3,-8)
- **10.** a) x^2+2x-8 b) $x^2+13x+42$ c) $3x^2+9x-12$ d) $x^2-16x+60$ e) $4x^2-10x-6$ f) x^2-25 g) $x^2+8x+16$
- **11.** a) 5(x-7y) b) $4xy^3(x-4x^2+2y^2)$ c) (x-2)(x-5) d) 2(x+4)(x-6) e) (x+3y)(x+5y)f) (2x+3)(x-4) g) (3x-1)(4x+5) h) $(x^2+2)(x^2-5)$
- 12. a) 4 and -3 b) -6 and 3 c) -8 and -3 d) 6 and -5 e) 9 and -9 f) -3 and -1/2 g) -4/3 and -1/2 h) -2 and 1/3
- 13. a) 2.6 and -1.6 b) 0.7 and -0.4 c) 0.3 and -4.3 d) -0.2 and 1.5 e) none f) 4/3
- **14.** a) 6 and -0.5 b) x=2.75 c) (2.75,-21.1)
- 15. a) 7 meters b) 125 meters c) 12 meters
- 16. a) 12. 3 seconds b) 6.1 seconds c) 186.7 meters
- 17. width 11 m, length 19 m
- **18.** \$1000