Chapter 5- Trig Functions

Lesson Package

MCR3U

Chapter 4 Outline

Unit Goal: Be able to identify and represent sinusoidal functions, and solve problems involving sinusoidal functions, including problems arising from real-world applications.

| Section | Subject | | Learning Goals |
| :---: | :---: | :--- | :---: | Curriculum | Expectations |
| :---: |

Assessments	F/A/0	Ministry Code	P/O/C	KTAC
Note Completion	A		P	
Practice Worksheet Completion	F/A		P	
PreTest Review	F/A		P	
Test - Trig Geometry	O	D2.1, D2.2, D2.3, D2.4, D2.5, D2.6, D2.7, D2.8, D3.4	P	$\mathrm{K}(21 \%), \mathrm{T}(34 \%), \mathrm{A}(10 \%)$,

L1 - Modeling Periodic Behaviour
 MCR3U
 Jensen

Section 1: Definitions

\qquad : a function that has a pattern of y-values that repeats at regular intervals.
\qquad : one complete repetition of a pattern.
\qquad : the horizontal length of one cycle on a graph.
\qquad : half the distance between the maximum and minimum values of a periodic function.

Section 2: Recognizing Properties of Periodic Functions

How to find the PERIOD of a function: choose a convenient x-coordinate to start at and then move to the right and estimate the x-coordinate of the where the next cycle begins. Find the difference of these x coordinates to calculate the period of the function.

Example 1: Determine whether the functions are periodic or not. If it is, state the period of the function.

ii)

Example 2: Is the function periodic? If so, what is the amplitude?
How to find the AMPLITUDE of a function: the amplitude is half the difference between the max and min values. Use the formula:

$$
\text { amplitude }=\frac{y_{\max }-y_{\min }}{2}
$$

Example 3: In the following periodic function, determine the period and amplitude.

Section 3: Predicting Values of a Periodic Function

Example 4: For the following function...

a) determine $f(2)$ and $f(5)$
b) determine $f(8), f(-10)$, and $f(14)$

Hint:
i) figure out the period of the function
ii) add or subtract the period of the function until you get back to a value on the graph that you know.

c) determine 4 values of x so that $f(x)=2$

Hint:

Keep adding/subtracting the period value to the x value where $y=2$.

Example 5: A cutting machine chops strips of plastic into their appropriate lengths. The following graph shows the motion of the cutting blade on the machine in terms of time.

a) State the max height of the blade, the minimum height, and the amplitude of the function.
b) What is the period of this function?
c) State the next two times that the blade will strike the cutting surface?

L2 - Graphing Sine and Cosine Functions

MCR3U
Jensen

Section 1: Graphing Sine and Cosine

DESMOS demonstration

To graph sine and cosine, we will be using a Cartesian plane that has angles for x values.
Example 1: Complete the following table of values for the function $f(x)=\sin (x)$. Use special triangles, the unit circle, or a calculator to find values for the function at 30° intervals. Use the table to graph the function.

x	$f(x)$
0	
30	
60	
90	
120	
150	
180	
210	
240	
270	
300	
330	
360	

Example 2: Complete the following table of values for the function $f(x)=\cos (x)$. Use special triangles, the unit circle, or a calculator to find values for the function at 30° intervals. Use the table to graph the function.

x	$f(x)$
0	
30	
60	
90	
120	
150	
180	
210	
240	
270	
300	
330	
360	

Domain:
Range:
Period:
Amplitude:

Section 3: Transformations of the Sine and Cosine Functions
$y=a \sin [k(x-d)]+c$
Desmos Demonstration

a	k	d	c
Vertical stretch or compression by a factor of a. Vertical reflection if $a<0$ $\|a\|=\text { amplitude }$	Horizontal stretch or compression by a factor of $\frac{1}{k}$. Horizontal reflection if $k<0$. $\frac{360}{\|k\|}=\text { period }$	Phase shift $\begin{aligned} & d>0 ; \text { shift right } \\ & d<0 ; \text { shift left } \end{aligned}$	Vertical shift $\begin{aligned} & c>0 ; \text { shift up } \\ & c<0 ; \text { shift down } \end{aligned}$

Example 3: For the function $y=3 \sin \left[2\left(\theta+60^{\circ}\right)\right]-1$, state the...

Amplitude:	Period:
Phase shift:	Vertical shift:
Max:	Min:

Section 1: Review of Sine and Cosine Functions

$$
y=a \sin [k(x-d)]+c \text { OR } y=a \cos [k(x-d)]+c
$$

a	k	d	C
Vertical stretch or compression by a factor of a. Vertical reflection if $a<0$ $\|a\|=\text { amplitude }$	Horizontal stretch or compression by a factor of $\frac{1}{k}$. Horizontal reflection if $k<$ 0. $\frac{360}{\|k\|}=\text { period }$	Phase shift $\begin{aligned} & d>0 ; \text { shift right } \\ & d<0 ; \text { shift left } \end{aligned}$	Vertical shift $\begin{aligned} & c>0 ; \text { shift up } \\ & c<0 ; \text { shift down } \end{aligned}$

Graphs of parent functions $y=\sin x$ and $y=\cos x$ using key points:

\boldsymbol{x}	\boldsymbol{y}

\boldsymbol{x}	\boldsymbol{y}

Section 2: Graphing Transformed Sinusoidal Functions

Example 1: Graph $y=2 \sin x+1$ using transformations. Then state the amplitude, period, and number of cycles between 0° and 360°.

Amplitude:

Period:

Number of cycles between 0° and 360° :

Example 2: Graph $y=-1.5 \cos \left[3\left(x-30^{\circ}\right)\right]+0.5$ using transformations. Then state the amplitude, period, and number of cycles between 0° and 360°.

Amplitude:

Period:

Number of cycles between 0° and 360° :

Example 3: Graph $y=\sin \left[-4\left(x-60^{\circ}\right)\right]+2$ using transformations. Then state the amplitude, period, and number of cycles between 0° and 360°.

Amplitude:

Period:

Number of cycles between 0° and 360° :

Section 1: How to Determine the Equation of a Sine or Cosine Function Given its Graph

1) Find the max and min of the function
2) Find the amplitude of the function (a-value): $a=\frac{\max -\min }{2}$
$1 \& 2$

3) Find the vertical shift (c-value): $c=\max -\operatorname{amplitude}$ (this finds the 'middle' of the function)

4) Find the period (in degrees) of the function using a 485 starting point and ending point of a full cycle
5) Calculate the k-value. $k=\frac{360}{\text { period }} \rightarrow$ period $=\frac{360}{|k|}$

6) Determine the phase shift (d-value)

- for $\sin x$: trace along the center line and find the distance between the y-axis and the bottom left of the closest rising midline.
- for $\cos x$: the distance between the y-axis and the closest maximum point

Section 2: Determining the Equation of a Sinusoidal Function Given its Graph

Example 1: For each of the following graphs, determine the equation of a sine and cosine function that represents each graph:
a)

b)

c)

Example 2: A sinusoidal function has an amplitude of 3 units, a period of 180 degrees and a max point at $(0,5)$. Represent the function with an equation in two different ways.

Example 3: A sinusoidal function has an amplitude of 5 units, a period of 120 degrees and a maximum at $(0,3)$. Represent the function with an equation in two different ways.

L5 - Trig Applications Part 1

MCR3U
Jensen
Before we do application questions, it will be good to know the connection between what we learned last chapter and the functions from this chapter:

Desmos - Sine Graph
 Desmos - Cosine Graph

Section 1: Remembering the Unit Circle

The circle being used has radius r. The radius and the coordinates of a point on the circle (x, y) are related to the primary trig ratios. Study the circle and write expressions for $\sin \theta, \cos \theta$, and $\tan \theta$ in terms of x, y, and r.

270°
$\sin \theta=$
$\boldsymbol{\operatorname { c o s }} \theta=$
$\tan \theta=$

A UNIT CIRLCE has a radius of 1 . Use the unit circle to write expressions for $\sin \theta, \cos \theta$, and $\tan \theta$ in terms of x, y, and r.

270°
$\sin \theta=$
$\boldsymbol{\operatorname { c o s }} \theta=$
$\boldsymbol{\operatorname { t a n }} \theta=$

Summary of findings for trig ratios using the unit circle:

The sine function:

graphs the relationship between the angle and the \qquad displacement from the x-axis.

The cosine function:

graphs the relationship between the angle and the \qquad displacement from the y-axis.

Section 2: Modeling with Graphs

Example 1: You are in a car of a Ferris wheel. The wheel has a radius of 8 m and turns counterclockwise. Let the origin be at the center of the wheel. Begin your sketch when the radius from the center of the wheel to your car is along the positive x -axis.
a) Sketch the graph of vertical displacement versus the angle of rotation for 1 complete rotation.

b) Sketch the graph of horizontal displacement versus the angle of rotation for 1 complete rotation starting along the positive x -axis.

c) Sketch the graph of horizontal displacement versus the angle of rotation for 1 complete rotation if your car starts at the bottom of the Ferris Wheel.

Example 2: A carousel rotates at a constant speed. It has a diameter of 15 m . A horse that is directly in line with the center, horizontally, rotates around 3 full times. Create a graph that models the horizontal distance from the center as the horse rotates around.

Section 3: Modeling with Equations

Example 3: A group of students is tracking a friend, John, who is riding a Ferris wheel. They know that John reaches the maximum height of 11 m at 10 seconds, and then reaches the minimum height of 1 m at 55 seconds.
a) Develop an equation of a sine and cosine function that models John's height above the ground.

b) What is John's height above the ground after 78 seconds?

Example 4: Don Quixote, a fictional character in a Spanish novel, attacked windmills because he thought they were giants. At one point, he got snagged by one of the blades and was hoisted into the air. The center of the windmill is 10 meters off the ground and each blade is 7 meters long. The blade picked him up when it was at its lowest point.
a) Graph Don's height above the ground during one full rotation around the windmill

b) Determine an equation for a sine and cosine function that represents his height above the ground in relation to the angle of rotation.

L6 - Trig Applications Part 2

MCR3U
Jensen

Example 1: The height, h, in meters, above the ground of a rider on a Ferris wheel after t seconds can be modelled by the sine function:

$$
h(t)=10 \sin [3(t-30)]+12
$$

a) Graph the function using transformations

b) Determine the max height, min height, and time for one revolution.
c) Represent the function using the equation of a cosine function
d) What is the height of the rider after 35 seconds? Use both equations to verify your answer.

Example 2: Skyscrapers sway in high-wind conditions. In one case, at $t=2$ seconds, the top floor of a building swayed 30 cm to the left $(-30 \mathrm{~cm})$ and at $t=12$ seconds, the top floor swayed 30 cm to the right $(+30 \mathrm{~cm})$ of its starting position.
a) What is the equation of a cosine function that describes the motion of the building in terms of time?
b) What is the equation of a sine function that describes the motion of the building in terms of time?

Example 3: The height of the tide on a given day at ' t ' hours after midnight is modelled by:

$$
h(t)=5 \sin [30(t-5)]+7
$$

a) Find the max and min values for the height of the depth of the water
b) What time is hight tide? What time is low tide?
c) What is the depth of the water at 9 am ?

Example 4a: A wind turbine has a height of 55 m from the ground to the center of the turbine. Graph one cycle of the vertical displacement of a 10 m blade turning counterclockwise. Assume the blade starts pointing straight down.

Example 4b: Model the rider's height above the ground versus angle using a transformed sine and cosine function.

