Chapter 6- Discrete Functions

Lesson Package

MCR3U

Chapter 6 Outline

Unit Goal: Be able to demonstrate an understanding of the relationships involved in arithmetic sequences and series, and recursive functions.

Section	Subject	Learning Goals	Curriculum Expectations
L1	Sequences	- Identify sequences as arithmetic, geometric or neither. Determine the equation for the general term of an arithmetic or geometric sequence.	C1.1, C1.3, C2.1, C2.2
L2	Series	- Determine the sum of an arithmetic or geometric series	C2.3
L3	More Sequences	- Solve problems involving arithmetic and geometric sequences	C2.4
L4	More Series	- Solve problems involving arithmetic and geometric series	C2.4
L5	Recursive Functions	- Represent a sequence using a recursion formula. Use a recursion formula to write the terms of a recursive function.	C1.2, C1.3, C1.4, C1.5
L6	Pascal's Triangle	- Expand binomials using Pascal's Triangle	C1.6

Assessments	F/A/O	Ministry Code	P/O/C	KTAC
Note Completion	Α		P	
Practice Worksheet Completion	F/A		P	
PreTest Review	F/A		P	
Test – Trig Geometry	0	C1.1, C1.2, C1.3, C1.4, C1.5, C1.6, C2.1, C2.2, C2.3, C2.4	Р	K(21%), T(34%), A(10%), C(34%)

L1 - Sequences (Part 1)

MCR3U Jensen

DO IT NOW!

How much can you figure out about this list of numbers?

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,...

Definitions

Formula for general term (explicit formula):

Sequence:

Example 1: Write the first three terms of each sequence, given the explicit formula for the *n*th term of the sequence.

a)
$$t_n = 3n^2 - 1$$

Example 2

14, 18, 22, 26,...

b) What is the value of t_{30}

Example 3

a) Determine a formula for the general term of the following arithmetic sequence.

7, 3, -1, -5,...

b) What is the value of t_{41}

Geometric Sequences Examples of sequences: **a)** 2, 6, 18, 54,... **b)** 80, 40, 20, 10,... These are called *geometric* sequences because the ratio of consecutive terms is constant. Formula for the General Term of a Geometric Sequence n: a: t_n : r:

Example 4:

a) Determine a formula for the general term of the following geometric sequence.

2, 6, 18, 54, 162,...

b) What is the value of t_9

Example 5:

a) Determine a formula for the general term of the following geometric sequence.

270, 90, 30, 10,...

b) What is the value of t_9

L2 - Arithmetic and Geometric Series MCR3U Jensen

General Form

Formula for general term (explicit formula):
Sequence:
Arithmetic Sequence:
Geometric Sequence:
Series:
Example 1: Find S_4 of the sequence represented by $t_n = 1 + (n-1)3$
Arithmetic Series

OR

Example 2: For the series $1 + 3 + 5 + 7 + \cdots$ find S_{23}							
Example 3: An arithmetic series with 52 terms starts with -7 and ends with 102. Find the sum of the							
series.		Note: Since we know t ₅₂ , it would be easier to use this version of the formula					
		$S_n = \frac{n}{2}(a + t_n)$					
Geometric Series							
	General form						

L3 - Arithmetic and Geometric Sequences MCR3U Jensen Sequences Questions What is the difference between a sequence and a series?

What is the difference between Arithmetic and Geometric?

Example 1: -10, -4, 2, ...

- **a)** Determine whether the sequence is arithmetic or geometric.
- **b)** Determine an equation for the sequence.
- **c)** Find the value of t_{21}

L4 - Arithmetic and Geometric Series

MCR3U Jensen

DO IT NOW!

In an arithmetic sequence, $t_3 = 25$ and $t_9 = 43$. Determine the formula for the general term of this sequence.

Arithmetic

Sequence:

$$t_n = a + (n-1)d$$

Series

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$S_n = \frac{n}{2}(a + t_n)$$

Geometric

Sequence:

$$t_n = a \cdot r^{n-1}$$

Series:

$$S_n = \frac{a(r^n - 1)}{r - 1}$$

Method 1: write out full series	
Method 2: Solve using logarithms	Figure out how many terms are in the series by solving for n in the formula:
Method 3: Solve using powers with the same base	

Example 6: Calculate the sum of the geometric series, 960 + 480 + 240 +....+15

Example 7: A tennis tournament has 128 entrants. A player is dropped from the competition after losing one match. Winning players go on to another match. What is the total number of matches that will be played in this tournament?

Note: The first term is 128/2 = 64 because 2 players participate in one match. The last term is 1 but we don't know what term number it is.

L5 - Recursive Procedures

MCR3U Jensen

In earlier sections we used function notation to write an explicit formula to determine the value of any term in a sequence. Sometimes it is easier to calculate one term in a sequence using the previous terms.

Recursion Formula:

Recursive Functions

Functions that get new terms in the sequence by using earlier terms.

Example 1: Write the first four terms of the sequence.

a)
$$t_n = t_{n-1} - 2$$
 where $t_1 = 7$

b)
$$t_n = 2t_{n-1} + 4$$
 where $t_1 = 5$

You may also see questions asked in function notation.

Example 2: Find the first 4 terms.

$$f(n)=2f(n-1)-7$$
 where $f(1)=2$

Example 3: Find the first seven terms of the sequence.

$$t_n = t_{n-2} + t_{n-1}$$
 where $t_1 = 1$ and $t_2 = 1$

Example 4: Write a recursion formula for each sequence

Look for a pattern in the terms:

$$t_1 = -3$$

$$t_{2}^{1} = t_{1} \times (-2)$$

$$t_3^2 = t_2^1 \times (-2)$$

$$t_4 = t_3 \times (-2)$$

b)

c) 3, 5, 8, 12, ...

L6 - Pascal's Triangle

MCR3U Jensen

b) What patterns do you notice in Pascal's Triangle?

c) Expand each of the following binomials.

$$(a+b)^0 =$$

$$(a+b)^1 =$$

$$(a+b)^2 =$$

$$(a+b)^3 =$$

$$(a+b)^4 =$$

Blaise Pascal (French Mathematician) discovered a pattern in the expansion of $(a+b)^n$ which patterns do you notice?

Example 1: Expand each binomial using Pascal's Triangle

a)
$$(a+b)^6$$

b)
$$(2x - 3)^5$$

c)
$$(2x + 3y^2)^5$$

$$\mathbf{d)} \left(\frac{y}{2} - y^2 \right)^4$$

Example 3:

a) What is the second term in the expansion of $(x + 6)^7$

b) What is the 5th term in the expansion of $(3y - 4)^8$

Example 4:

a) What is the coefficient of x^3 in the expansion of $(x + 6)^6$

b) What is the coefficient of y^4x^2 in the expansion of $(y + 3x)^6$