I MCR3U
Jensen

General Properties of Exponential Decay (os growth)
Equation:

$$
y=a(b)^{x}
$$

$a=$ initial amount
$b=\operatorname{growth}(b>1)$ or decay $(o<b<1)$ factor
$y=$ future amount
$x=$ \# of growth/decay periods
To calculate x, use the equation:

$$
x=\frac{\text { total time }}{\text { time of } 1 \text { growth/decay period }}
$$

Finding Initial Amount
24 months
Example 1: You are going to ship some U- 239 which has a half-life o 2 years. There must be 500 g upon arrival. If shipping will take 4 months, how much should you package initially?

$$
\begin{align*}
& y=500 \tag{6}\\
& a=? \\
& b=\frac{1}{2} \\
& x=\frac{4}{24}=\frac{1}{6}
\end{align*}
$$

$$
\sqrt{a \simeq 561.23 \mathrm{~g}}
$$

Example 2: We (as a class) have been hired by a surgeon to grow a skin graft. It takes 3 days for the amount of skin to double. If we need 2 kg of skin in one week, how much should we start with?

$$
\begin{aligned}
& y=2 \\
& a=? \\
& b=2 \\
& x=\frac{t}{3}=\frac{7}{3}
\end{aligned}
$$

$$
\begin{aligned}
& y=a(b)^{x} \\
& \frac{2^{3 / 3}}{2^{1 / 3}} \frac{a\left(x^{2}\right)^{1 / 3}}{\left(2^{2 / 3}\right.} \\
& \frac{1}{2^{4 / 3}}=a \\
& a \simeq 0.4 \mathrm{~kg}
\end{aligned}
$$

Compound Interest
Formula: $\quad A=P\left(1+\frac{i}{n}\right)^{n t}$
A: Future amount
P: Principle amount
i: interest rate (decimal)
n: number of times interest is compounded each year
t: number of years

Example 3: You have just passed GO and you receive $\$ 200$. You decide to invest it for 4 years in an account that pays 5% interest per year. How much will you have after 10 years if...
a) the interest is compounded annually?

$$
\begin{aligned}
A & =P\left(1+\frac{i}{n}\right)^{n t} \\
A & =200\left(1+\frac{0.05}{1}\right)^{1(4)} \\
A & =200(1.05)^{4} \\
A & =\$ 243.10
\end{aligned}
$$

b) the interest is compounded semi-annually?

$$
\begin{aligned}
& A=200\left(1+\frac{0.05}{2}\right)^{2(4)} \\
& A=200(1.025)^{8} \\
& A=\$ 243.68
\end{aligned}
$$

c) the interest is compounded monthly?

$$
\begin{aligned}
& \text { onthly? } \\
& A=200\left(1+\frac{0.05}{12}\right)^{12(4)} \\
& A=200\left(1+\frac{0.05}{12}\right)^{48} \\
& A=\$ 244.18
\end{aligned}
$$

Example 4: You are about to go to University. When you are done in 4 years, you want to buy a new car. The one you are looking at costs $\$ 16,000$. If you can find an investment that pays 10.9% interest per year, compounded annually, how much should you invest now?

