L3 – Compound Interest / Initial Amount MCR3U Jensen

General Properties of Exponential Decay (or growth) Equation: $y = \alpha (b) \chi$ a = initial amount b = growth (b>1) or decay (0 < b < 1) factor y = future amount x = # of growth / decay periodsTo calculate x, use the equation: $\chi = \frac{\text{total time}}{\text{time of 1 growth / decay period}}$

Finding Initial Amount

Example 1: You are going to ship some U-239 which has a half-life of 2 years. There must be 500g upon arrival. If shipping will take 4 months, how much should you package initially?

24 months

$$y = 500 \qquad y = a(b)^{x}$$

$$a = ? \qquad 500 = a(\frac{1}{2})^{16}$$

$$b = \frac{1}{2}$$

$$\chi = \frac{4}{ay} = \frac{1}{6}$$

$$y = a(b)^{x}$$

$$\frac{500}{(\frac{1}{2})^{16}} = a(\frac{1}{2})^{16}$$

$$\frac{500}{(\frac{1}{2})^{16}} = a(\frac{1}{2})^{16}$$

$$\frac{500}{(\frac{1}{2})^{16}} = a(\frac{1}{2})^{16}$$

Example 2: We (as a class) have been hired by a surgeon to grow a skin graft. It takes 3 days for the amount of skin to double. If we need 2kg of skin in one week, how much should we start with?

$$y = 2$$

$$a = ?$$

$$b = 2$$

$$\chi = \frac{1}{10}$$

$$y = a (b)^{\chi}$$

 $\frac{2^{3/3}}{2^{7/3}} = \frac{a (2)^{7/3}}{(2)^{7/3}}$
 $\frac{1}{a^{4/3}} = a$
 $a \simeq 0.4 \text{ kg}$

Made with Goodnotes

Compound Interest

Formula:

$$P(1+\frac{i}{n})^{nt}$$

- A: Future amount
- P: Principle amount
- i: interest rate (decimal)

A =

- n: number of times interest is compounded each year
- t: number of years

Example 3: You have just passed GO and you receive \$200. You decide to invest it for 4 years in an account that pays 5% interest per year. How much will you have after 10 years if...

a) the interest is compounded annually? $A = P(1 + \frac{1}{h})^{ht}$ $A = 200(1 + \frac{0.05}{1})^{1}(4)$ $A = 200(1.05)^{4}$ A = 4243.00

b) the interest is compounded semi-annually?

$$A = 200 (|+ \frac{0.05}{2})^{2(4)}$$

$$A = 200 (|.025)^{8}$$

$$A = 4243.68$$

c) the interest is compounded monthly? $A = 200 \left(1 + \frac{0.05}{12}\right)^{12} \left(4\right)$ $A = 200 \left(1 + \frac{0.05}{12}\right)^{48}$ $A = 4244 \cdot 18$

Made with Goodnotes

Example 4: You are about to go to University. When you are done in 4 years, you want to buy a new car. The one you are looking at costs \$16,000. If you can find an investment that pays 10.9% interest per year, compounded annually, how much should you invest now?

$$A = P \left(1 + \frac{i}{n} \right)^{nt}$$

$$16000 = P \left(1 + \frac{0.109}{1} \right)^{1(4)}$$

$$\frac{16000}{1.109^{4}} = P \left(1..\frac{109}{10109^{4}} \right)^{1}$$

