Compound Interest - Worksheet

MCR3U Iensen SOLUTIONS

- 1) Marvin deposits \$100 into an account that pays interest at 5% per year, compounded annually.
- a) Write an equation that can be used to calculate the amount in his account in the form $A = P(1+i)^n$.

b) Complete the following table...

Number of Compounding Periods (years)	Amount (\$)
0	100
1	105
2	110.25
3	113.76
4	121.55

- **2)** Sadia deposits a \$2000 inheritance into an account that earns 4% per year, compounded annually. Find the amount in the account after each time.
- a) 3 years

b) 8 years

$$A = 2000 (1.04)^8$$

= 42737.14

3) Soda invests \$500 in an account that earns 7% per year, compounded annually. How long does Soda need to leave her investment in the account in order to double her money?

$$A = 500 (1.07)^n$$
 $1000 = 500 (1.07)^n$

$$n = \frac{\log a}{\log 1.07}$$

4) Art Vandelay deposited some money into an account that pays 3% per year, compounded annually. Today the account balance is \$660. How much was in the account...

$$P = \frac{660}{1.03}$$

$$P = \frac{660}{(1.03)^6}$$

5) Elaine wants to invest some money that will grow to \$1000 in 6 years. If her account pays 4.5% interest, compounded annually, how much should Lydia invest today?

$$=\frac{1000}{(1.045)^6}$$
 $=\frac{1000}{(1.045)^6}$
 $=\frac{1000}{(1.045)^6}$

- **6)** To buy a new guitar, Phoebe borrows \$650, which she plans to repay in 5 years. The bank charges 12% per annum, compounded annually.
- a) Determine the amount that Phoebe must repay.

$$A = 650(1.12)^5$$
 $A = 41145.52$

b) How much would she have to pay if the interest was compounded semi-annually instead of annually? (Hint: twice as many compounding periods but the interest rate will need to be cut in half)

$$A = ?$$
 $P = 660$
 $i = 0.12 \div 2 = 0.06$
 $n = 5 \times 2 = 10$

c) How much would she have to pay if the interest was compounded monthly?

$$A = ?$$
 $P = 650$
 $\lambda = 0.12 = 12 = 0.01$
 $n = 5 \times 12 = 60$

Answers

) a)
$$A = P(1.05)^n$$
 b)

Number of Compounding Periods (years)	Amount (\$)
0	100
1	105
2	110.25
3	115.76
4	121.55

- **2) a)** \$2249.73 **b)** \$2737.14
- **3)** 10.24 years
- **4) a)** \$640.78 **b)** \$569.32
- **5)** \$767.90
- **6)** a) \$1145.52 b) \$1164.05 c) \$1180.85