MPM2D
I Jensen

1) Find the coordinates of the midpoint of each line segment.
a) $P(2,-7)$ and $Q(-3,5)$
b) $S(6,-2)$ and $T(2,2)$
c) $M(2,-5)$ and $N(5,-1)$
d) $A\left(\frac{7}{2}, \frac{1}{2}\right)$ and $B\left(-\frac{5}{3}, \frac{3}{2}\right)$
2) For a line segment $K L$, one endpoint is $K(5,1)$ and the midpoint is $M(1,4)$. Find the coordinates of endpoint L.
3) Find the exact length of the line segment joining each pair of points.
a) $A(7,9)$ and $B(1,1)$
b) $W(4,5)$ and $X(-2,3)$
c) $E(-2,8)$ and $F(-5,5)$
d) $R(-10,5)$ and $T(4,-1)$
4) $\triangle A B C$ has vertices $A(4,5), B(-1,2)$, and $C(5,1)$.
a) Classify the triangle by side length.
b) Determine the perimeter of the triangle, to the nearest tenth.
5) $\triangle A B C$ has vertices $A(10,2), B(4,-2)$, and $C(-4,6)$. Draw and determine the equation of...
a) the median from vertex C

b) the right bisector of $A B$
c) The altitude from vertex B

6) A triangle has vertices $A(1,4), B(-3,-2)$, and $C(3,0)$. Determine the exact length of the median from vertex B.
7) Write an equation for the circle with center $(0,0)$ and the given radius.
a) radius 12
b) radius 20
c) radius $\sqrt{87}$
8) The following equations model circles with center (0,0). Determine the radius of each circle. Round to the nearest tenth, if necessary.
a) $x^{2}+y^{2}=121$
b) $x^{2}+y^{2}=20$
c) $x^{2}+y^{2}=0.49$
9) Find the equation of the circle that is centered at the origin and passes through the point $(5,-1)$
10) Do each of the following points line inside, outside, or on the circle defined by $x^{2}+y^{2}=58$
a) $(5,5)$
b) $(-3,7)$
c) $(8,1)$
11) Write the equation of the circle that is centered at $(2,4)$ and has a radius of 6 .
12) Write the equation of the circle that is centered at $(-3,2)$ and goes through the point $(-6,4)$
13) Given $\triangle D E F$ with vertices $D(-4,-1), E(4,3)$, and $F(0,-5)$, verify that
a) $\triangle D E F$ is isosceles
b) the line segment joining the midpoints of the equal sides is parallel to the third side and half the length of the third side.
14) $\triangle A B C$ has vertices $A(4,2), B(0,4)$, and $C(-2,-2)$. Determine the coordinates of the circumcenter of $\triangle A B C$.
15) $\triangle P Q R$ has vertices $P(1,3), Q(-1,-1)$, and $R(5,1)$. Determine the coordinates of the centroid of $\triangle P Q R$.
16) The equation of a circle with center $O(0,0)$ is $x^{2}+y^{2}=20$. The points $P(2,-4)$ and $Q(4,2)$ are endpoints of chord $P Q . A B$ right bisects the chord $P Q$ at C. Verify that the center of the circles lies on the right bisector of chord $P Q$.

Answers

1)a) $\left(-\frac{1}{2},-1\right)$ b) $(4,0)$ c) $\left(\frac{7}{2},-3\right)$ d) $\left(\frac{11}{12}, 1\right)$
2) $(-3,7)$
3)a) 10 b) $\sqrt{40}=2 \sqrt{10}$ c) $\sqrt{18}=3 \sqrt{2}$ d) $\sqrt{232}=2 \sqrt{58}$
4)a) scalene b) 16.0 units
5)a) $y=-\frac{6}{11} x+\frac{42}{11}$ b) $y=-\frac{3}{2} x+\frac{21}{2}$ c) $y=\frac{7}{2} x-16$
6) $\sqrt{41}$ units
7) a) $x^{2}+y^{2}=144$ b) $x^{2}+y^{2}=400$ c) $x^{2}+y^{2}=87$
8)a) 11 b) 4.5 c) 0.7
9) $x^{2}+y^{2}=26$
10)a) inside b) on c) outside
11) $(x-2)^{2}+(y-4)^{2}=36$
12) $(x+3)^{2}+(y-2)^{2}=13$
13) see posted solution
14) $\left(\frac{5}{7}, \frac{3}{7}\right)$
15) $\left(\frac{5}{3}, 1\right)$
16) see posted solutions

