Unit 1- Linear Systems

Workbook

MPM2D

Graph	Slopes of Lines	Intercepts	Number of Solutions
Intersecting		Usually different unless the lines intersect on an axis	1
Parallel \& Distinct	DIFFERENT		
Parallel \& Coincident	Same		

1) Solve each system by graphing.
a) $\ell_{1}: y=2 x+1$ Solution: $x=-3, y=-5$

Line 1

$$
y=y^{m} 2 x+1^{b}
$$

$$
\text { slope }=m=\frac{2}{1}
$$

y-int $=b=1$
y-int $=b=-2$
b) $\ell_{1}: x+2 y=2$

Solution: $x=4, y=-1$
$\underbrace{\text { Line }}_{x+2 y=2} 1$
$2 y=-x+2$
$y=-\frac{1}{2} x+1^{b^{b}}$
slope $=m=\frac{-1}{2}$
y-int $=b=1$

$\overbrace{x+y=3}^{\text {Line } 2}$

$y=-1 x+3^{2 b}$
slope $=n=\frac{-1}{1}$

$$
y \text {-int }=b=3
$$

c) $\ell_{1}: y=2 x-3$ $\ell_{2}: 2 x-y=5$

$$
y^{2}=2 x-3
$$

$$
2 x-y=5
$$

$$
\text { slope }=m=\frac{2}{1}
$$

$$
2 x-5=y
$$

$$
y \text {-int }=t=-3
$$

$$
\begin{aligned}
& y=2 x-5^{m^{b}} \\
& \text { slope }=m=\frac{2}{1} \\
& y \text {-int }=k=-5
\end{aligned}
$$

No solutions. The lines are parallel and distinct
d)

$$
\begin{aligned}
& \ell_{1}: 3 x=y+4 \\
& \ell_{2}: 6 x-2 y-8=0
\end{aligned}
$$

Line 1

$$
\begin{aligned}
& 3 x=y+4 \\
& 3 x-4=y \\
& y=3 x-4 \\
& \text { slope }=m=\frac{3}{1} \\
& y \text {-int }=b=-4
\end{aligned}
$$

Line 2
Infinitely many solutions.

$$
6 x-2 y-8=0
$$ The lines are parallel and

$$
6 x-8=2 y
$$ coincident.

$$
3 x-4=y
$$

$$
y=3 x-4
$$

$$
\text { sloe }=m=\frac{3}{1}
$$

$$
y-\operatorname{int}=b=-4
$$

e)

$$
\begin{aligned}
& \ell_{1}: 3 x+2 y=3 \\
& \ell_{2}: 2 x+10 y=-5
\end{aligned}
$$

Line 1

$$
\begin{aligned}
& 3 x+2 y=3 \\
& 2 y=-3 x+3 \\
& y=-\frac{3}{2} x+\frac{3}{2}
\end{aligned}
$$

$\overbrace{2 x+10 y=-5}^{\text {Line } 2}$

$$
10 y=-2 x-5
$$

$$
y=-\frac{2}{10} x-\frac{5}{10}
$$

$$
\text { slope }=m=-\frac{3}{2}
$$

$$
y=-\frac{1}{5} x-\frac{1}{2}
$$

$$
\text { slope }=n=\frac{-1}{5}
$$

$$
y \text {-int }=b=\frac{3}{2}
$$

Estimated solution: $x=1.5, y=-0.8$

$$
x=1.5, y=-0.8
$$

f) $\ell_{1}: 2 x+6 y-12=0$
$\ell_{2}: 6 x-3 y-15=0$

Solution: $x=3, y=1$

Line 2 Check:

Line 1

$$
\begin{aligned}
& 2 x+6 y-12=0 \\
& 6 y=-2 x+12 \\
& y=\frac{-2}{6} x+2 \\
& y=\frac{-1}{3} x+2 \\
& \text { slope }=m=\frac{-1}{3} \\
& y \text {-int }=b=2
\end{aligned}
$$

$$
\begin{aligned}
& 6 x-3 y-15=0 \\
& 6 x-15=3 y \\
& 2 x-5=y \\
& y^{2}=2 x-5 \\
& \text { slope }=m=\frac{2}{1} \\
& y \text {-int }=b=-5
\end{aligned}
$$

2) Without graphing, determine whether each system has one solution, no solutions, or infinitely many solutions. Explain.
a) $\ell_{1}: 2 x+y=5$
$\ell_{2}: 2 x+10 y=-5$
b) $\ell_{1}: 3 x-y=0$
$\ell_{2}: 6 x-2 y=3$

$$
\text { c) } \begin{aligned}
& \ell_{1}: x+y=2 \\
& \ell_{2}: 3 x=6-3 y
\end{aligned}
$$

$\begin{array}{ll}\text { Line } 1 & \text { Line } 2 \\ 3 x-y=0 & \begin{array}{l}6 x-2 y=3 \\ 3 x=y\end{array} \\ \begin{array}{ll}6 x-3=2 y \\ 3 x-\frac{3}{2}=y\end{array} \\ \text { slope }=m=3 x+0 & y=3 x-\frac{3}{2} \\ y-\operatorname{int}=b=0 & \begin{array}{l}\text { scope }=m=3 \\ y-i n t=b=-\frac{3}{2}\end{array}\end{array}$
Same slope but different y-intercepts; the lines are parallel and distinct and have NO solutions.

Line 1	Line 2
$x+y=2$	$3 x=6-3 y$ $y=-x+2$
$3 y=-3 x+6$	
slope $=m=-1$	$y=-1 x+2$
y-int $=6=2$	slope $=m=-1$
$y-i n t=b=2$	

same slope and y-internet.
The lines are parallel and coincident.
There we infinitely many solutions

Answers:

1)a) $(-3,-5)$ b) $(4,-1)$ c) no solutions; parallel and distinct d) infinite solutions; parallel and coincident
e) $(1.5,-0.8)$ this is an approximate answer $\mathbf{f})(3,1)$
2)a) one solution b) no solutions c) infinitely many solutions

MPM2D
Jensen

1) Solve each linear system using the method of substitution. Check your answers.
a) $\quad \ell_{1}: y=3 x-4$ $\ell_{2}: x+y=8$
b) $\quad \ell_{1}: x=-4 y+5$
$\ell_{2}: x+2 y=7$
(1) $y=3 x-4$
(2) $x+y=8$
$x+(3 x-4)=8$
$y=3(3)-4$
$4 x-4=8$
$y=5$

$$
4 x=12
$$

$$
x=3
$$

$\begin{array}{ll}\text { (1) } x=-4 y+5 & \text { (2) } x+2 y=7\end{array}$ $\begin{array}{ll}x=-4(-1)+5 & (-4 y+5)+2 y=7 \\ x=9 & \end{array}$ $x=9$
$-2 y+5=7$
$-2 y=2$
Solution: $x=9, y=-1$

Solution: $x=3, y=5$
d) $\quad \begin{aligned} & \ell_{1}: 2 x+4 y=2 \\ & \ell_{2}: x=1-2 y\end{aligned}$
c) $\quad \ell_{1}: y=-2 x+3$
$\ell_{2}: 4 x-3 y=1$

> (1) $2 x+4 y=2 \quad$ (2) $x=1-2 y$ $2(1-2 y)+4 y=2$ $2-4 y+4 y=2$ $0 y=0$
infinitely many solutions.
Solution: $x=1, y=1$
The lines are parallel and coincident.
e) $\quad \begin{aligned} & \ell_{1}: x+2 y=3 \\ & \ell_{2}: 5 x+4 y=8\end{aligned}$
(1) $x+2 y=3$
(2) $5 x+4 y=8$
$x=3-2 y$
$5(3-2 y)+4 y=8$
$15-10 y+4 y=8$
$x=3-2\left(\frac{7}{6}\right)$
$-6 y=-7$
$x=3-\frac{7}{3}$
$x=\frac{9}{3}-\frac{7}{3}$
$x=\frac{2}{3}$

Solution: $x=\frac{2}{3}, y=\frac{7}{6}$
f) $\quad \ell_{1}: 6 x+5 y=7$
$\ell_{2}: x-y=3$
(1) $6 x+5 y=7$
$6(3+y)+5 y=7$
(2) $x-y=3$
$18+6 y+5 y=7$
$x=3+y$ $x=3+(-1)$
$11 y=-11$ $x=2$

Solution: $x=2, y=-1$
g) $\quad \ell_{1}: 2 m+n=2$
$\ell_{2}: 3 m-2 n=3$
(1) $2 m+n=2$
$n=2-2 m$
$n=2-2(1)$
$n=0$
(2) $3 m-2 n=3$ $3 m-2(2-2 m)=3$
(1) $3 a+2 b=4$
(2) $2 a+b=6$

$$
b=6-2 a
$$ $3 m-4+4 m=3$

$$
b=6-2(8)
$$

$$
\begin{gathered}
7 m=7 \\
m=1
\end{gathered}
$$

$$
\begin{gathered}
3 a+2(6-2 a)=4 \\
3 a+12-4 a=4 \\
-a=-8 \\
a=8
\end{gathered}
$$

$$
b=-10
$$

Solution: $m=1, n=0$

$$
\text { solution: } a=8, b=-10
$$

h) $\quad \begin{aligned} & \ell_{1}: 3 a+2 b=4 \\ & \ell_{2}: 2 a+b=6\end{aligned}$
i) $\quad \begin{aligned} & \ell_{1}: 2 x+y=4 \\ & \ell_{2}: 4 x-y=2\end{aligned}$
(1) $2 x+y=4$

$$
y=4-2 x
$$

$$
\begin{gathered}
\text { (2) } 4 x-y=2 \\
4 x-(4-2 x)=2 \\
4 x-4+2 x=2 \\
6 x=6 \\
x=1
\end{gathered}
$$

$$
\text { solution: } x=1, y=2
$$

2) Find the point of intersection of each pair of lines.
a) $\quad \begin{aligned} & \ell_{1}: 2 x=y+5 \\ & \ell_{2}: 3 x+y=-9\end{aligned}$
(1) $2 x=y+5$
$2 x-5=y$
(2) $3 x+y=-9$
$2\left(-\frac{4}{5}\right)-5=y$

$$
3 x+(2 x-5)=-9
$$

$$
5 x-5=-9
$$

$-\frac{8}{5}-\frac{25}{5}=y$

$$
5 x=-4
$$

$$
x=-\frac{4}{5}
$$

$-\frac{33}{5}=y$

$$
\text { Solution: } x=-\frac{4}{5}, y=-\frac{33}{5}
$$

b) $\quad \ell_{1}: 4 x+2 y=7$
$\ell_{2}:-x-7 y=6$
(1) $4 x+2 y=7$
$4(-7 y-6)+2 y=7$
$-28 y-24+2 y=7$ $-26 y=31$
$y=-\frac{31}{26}$
(2) $-x-7 y=6$
$-7 y-6=x$
$-7\left(-\frac{31}{26}\right)-6=x$
$\frac{217}{26}-\frac{156}{26}=x$
$x=\frac{61}{26}$
c) $\quad \ell_{1}: p+4 q=3$
$\ell_{2}: 5 p=-2 q+3$
d) $\quad \begin{aligned} & \ell_{1}: a+b+6=0 \\ & \ell_{2}: 2 a-b-3=0\end{aligned}$
$\begin{array}{ll}\text { (1) } p+4 q=3 & \text { (2) } 5 p=-2 q+3 \\ p=3-4 q & 5(3-4 q)=-2 q+3 \\ p=3-4\left(\frac{2}{3}\right) & 15-20 q=-2 q+3 \\ p=\frac{9}{3}-\frac{8}{3} & \frac{12}{}=18 q \\ p=\frac{12}{3} & q=\frac{2}{3}\end{array}$
(1) $a+b+b=0$
$a+(2 a-3)+6=0$
$3 a+3=0$
$3 a=-3$
$a=-1$
(2) $2 a-b-3=0$ $2 a-3=b$ $2(-1)-3=b$
$b=-5$

$$
\text { solution: } a=-1, b=-5
$$

$$
\text { solution: } p=\frac{1}{3}, \frac{2}{3}
$$

e) $\quad \ell_{1}: x-2 y-2=0$ $\ell_{2}: 3 x+4 y-16=0$
(1) $x-2 y-2=0$
(2) $3 x+4 y-16=0$
$x=2 y+2$

$$
3(2 y+2)+4 y-16=0
$$

$x=2(1)+2$
$6 y+6+4 y-16=0$
$x=4$

$$
\begin{aligned}
& 10 y-10=0 \\
& 10 y=10 \\
& y=1
\end{aligned}
$$

$$
\text { Solution: } x=4, y=1
$$

3) Samantha works twice as many hours per week as Adriana. Together they work a total of 39 hours in one week.
a) Write an equation to represent the information in the first sentence.

$$
S=2 A
$$

b) Write an equation to represent the information in the second sentence.

$$
S+A=39
$$

c) Use the method of substitution to find the number of hours worked by each person.
$S=2 A$
$5+A=39$
$5=2(13)$
$2 A+A=39$
$s=26$
$3 A=39$
$A=13$

Solution: Samantha worked 26 hours Adriana worked 13 hours
4) Ugo plays hockey and is awarded 2 points for each goal and 1 point for each assist. Last season he had a total of 86 points. He scored 17 fewer goals than assists.
a) Write a linear system to represent the information
(1) $2 g+a=86$
(2) $a-g=17$
b) Solve the system
$2 g+a=86$
$a-g=17$
$2 g+(17+g)=86$
$a=17+9$
$3 g=69$
$a=17+23$
$g \simeq 23$
$a=40$
c) What does the solution represent in the context of this question?

490 scored 23 goals and had 40 assists.
5) Joanne's family decides to rent a hall for her retirement party. Pin Hall charges $\$ 500$ for the hall and $\$ 15$ per meal. Bloom Place charges $\$ 350$ for the hall and $\$ 18$ per meal.
a) Write two equations to represent the information.
(1) $C=500+15 \mathrm{~g}$
(2) $C=350+18 g$
b) Solve the linear system to find the number of guests for which the charges are the same at both halls.

Solution: Both halls would charge \$1250 if 50 guests attended

Answers:

$\begin{array}{llll}\text { 1) a) } x=3, y=5 & \text { b) } x=9, y=-1 & \text { c) } x=1, y=1 & \text { d) infinite solutions }\end{array}$
$\begin{array}{llll}\text { e) } x=\frac{2}{3}, y=\frac{7}{6} & \text { f) } x=2, y=-1 & \text { g) } m=1, n=0 & \text { h) } a=8, b=-10 \\ \text { i) } x=1, y=2\end{array}$
2)a) $x=-\frac{4}{5}, y=-\frac{33}{5} \quad$ b) $x=\frac{61}{26}, y=-\frac{31}{26} \quad$ c) $p=\frac{1}{3}, q=\frac{2}{3} \quad$ d) $a=-1, b=-5 \quad$ e) $x=4, y=1$
3)a) $S=2 a$ b) $S+A=39$ c) Samantha worked 26 hours and Adriana worked 13 hours
4)a) $2 g+a=86 ; g=a-17$ b) $g=23, a=40$ c) 23 goals; 40 assists
5)a) $C=500+15 n$; $C=350+18 n$ b) 50 guests

1) Solve using the method of elimination
a) $\quad \ell_{1}: x+y=2$
b) $\quad \ell_{1}: x-y=-1$
$\ell_{2}: 3 x-y=2$

$$
\text { solution: } x=1, y=1
$$

$$
\begin{array}{cl}
\begin{array}{ll}
l_{1} \rightharpoonup x-y=-1 \\
l_{2} \rightarrow 3 x+y=-7+
\end{array} & \text { sub } x=-2 \text { into } l_{1}: \\
4 x=-8 & \\
x=-2 & -2-y=-1 \\
& -1=y
\end{array}
$$

$$
\begin{aligned}
& \text { c) } \quad \ell_{1}: 3 x+3 y=7 \\
& \ell_{2}: x+y=3 \\
& l_{1} \rightarrow 3 x+3 y=7 \\
& 3 \times 12 \rightarrow \frac{3 x+3 y=9-}{0 x+0 y=-2} \\
& \text { d) } \quad \ell_{1}: 5 x+2 y=-11 \\
& \ell_{2}: 3 x+2 y=-9 \\
& l_{1} \rightarrow 5 x+2 y=-11 \quad \text { subs } x=-1 \text { into } l_{2} \\
& \begin{array}{c}
1_{2} \rightarrow \frac{3 x+2 y=-9}{2 x=-2} \\
x=-1
\end{array} \\
& 3 x+2 y=-9 \\
& 3(-1)+2 y=-9 \\
& \text { No solutions. The lines are } \\
& \text { parallel and distinct. } \\
& \text { solution: } x=-1, y=-3
\end{aligned}
$$

2) Find the point of intersection of each pair of lines
a) $\quad \ell_{1}: x+2 y=2$
$\ell_{2}: 3 x+5 y=4$

$$
\begin{gathered}
3 \times l_{1} \rightarrow 3 x+6 y=6 \quad \text { sub } y=2 \text { into } l_{1} \\
l_{2} \rightarrow \frac{3 x+5 y=4}{y+2 y}=2 \\
x+2(2)=2 \\
x+4=2 \\
x=-2
\end{gathered}
$$

b) $\quad \ell_{1}: 3 x+5 y=12$

$$
\ell_{2}: 2 x-y=-5
$$

$$
\begin{gathered}
l_{1} \rightarrow 3 x+5 y=12 \\
5 \times 12 \rightarrow \frac{10 x-5 y=-25+}{13 x=-13} \\
x=-1
\end{gathered}
$$

Subs $x=-1$ into l_{2}
$2 x-y=-5$
$2(-1)-y=-5$
$-2+5=y$
$y=3$

$$
\text { solution: } x=-2, y=2
$$

$$
\text { Solution: } x=-1, y=3
$$

c) $\quad \ell_{1}: 3 x+y=13$
$\ell_{2}: 2 x+3 y=18$
$\begin{array}{cc}3 \times l_{1} \rightarrow 9 x+3 y=39 \\ l_{2} \rightarrow & 2 x+3 y=18 \\ 7 x=21 \\ x=3\end{array} \quad \begin{array}{cc}3 u b x=3 \text { into } l_{1} \\ 3 x+y=13 \\ 3(3)+y=13 \\ 9+y=13 \\ y=4\end{array}$

$$
\begin{gathered}
\text { sub } x=3 \text { into } \quad l \\
3 x+y=13 \\
3(3)+y=13 \\
9+y=13 \\
y=4
\end{gathered}
$$

d) $\quad \ell_{1}: 6 x+5 y=12$
$\ell_{2}: 3 x-4 y=6$

$$
\text { solution: } x=3, y=4
$$

$\ell_{1} \rightarrow 6 x+5 y=12$
$2 x l_{2} \rightarrow \frac{6 x-8 y}{}=12-$ $y=0$
sub $y=0$ into l_{1}

$$
6 x+5 y=12
$$

$$
6 x+5(0)=12
$$

$$
6 x=12
$$

$$
x=2
$$

$$
\text { Solution: } x=2, y=0
$$

3) Solve by elimination

a) $\quad \begin{aligned} & \ell_{1}: 3 x-2 y=5 \\ & \ell_{2}: 2 x+3 y=12\end{aligned}$
$2 \times l_{1} \rightarrow 6 x-4 y=10$
$\begin{aligned} & 3 \times 12 \rightarrow \begin{array}{l}6 x+9 y\end{array}=36- \\ &-13 y=-26 \\ & y=2\end{aligned}$
sub $y=2$ into ℓ

$$
\begin{aligned}
& 2 x+3 y=12 \\
& 2 x+3(2)=12 \\
& 2 x+6=12 \\
& 2 x=6 \\
& x=3
\end{aligned}
$$

$$
\text { Solution: } x=3, y=2
$$

b) $\quad \ell_{1}: 5 m+2 n=5$

$$
\ell_{2}: 2 m+3 n=13
$$

$$
\begin{array}{rlrl}
2 \times l_{1} \rightarrow 10 m+4 n & =10 \\
5 \times l_{2} \rightarrow 10 m+15 n & =65- & \text { sulu } n=5 \text { into } l_{1} \\
-11 n & =-55 & & \\
n m+2 n=5 \\
n & 5 m+2(5)=5 \\
& 5 n+10=5 \\
& 5 m=-5 \\
& n=-1
\end{array}
$$

$$
\text { solution: } m=-1, n=5
$$

c) $\quad \ell_{1}: 3 a-4 b=10$
$\ell_{2}: 5 a-12 b=6$

$$
\begin{aligned}
& 3 \times l_{1} \Rightarrow 9 a-12 t=30 \quad \text { out } a=6 \text { into } l_{1} \\
& k_{2} \rightarrow \frac{5 a-12 b=6-}{4 a=24} \\
& a=6 \\
& 3 a-4 b=10 \\
& 3(6)-4 b=10 \\
& \begin{array}{c}
18-10=4 b \\
8=4 b
\end{array} \\
& 8=410 \\
& b=2
\end{aligned}
$$

d) $\quad \ell_{1}: 3 h-4 k=5$
$\ell_{2}: 5 h+3 k=-11$

$$
\begin{array}{ll}
3 \times l_{1} \rightarrow 9 h-12 k=15 & \text { sub } h=-1 \text { into } l_{2} \\
4 \times l_{2} \Rightarrow \frac{20 h+12 k=-44+}{29 h=-29} & 5 h+3 k=-4 \\
h=-1 & 5(-1)+3 k=-11 \\
-5+3 k=-11
\end{array}
$$

[^0]$$
\text { solution: } h=-1, k=-2
$$
4) Mehrad works in a department store selling sports equipment. Baseball gloves cost $\$ 29$ each and bats cost $\$ 14$ each. One shift, he sells 28 items. His receipts total $\$ 647$.
a) How many bats did Mehrab sell?
$x=\#$ of gloves
(1) $x+y=28$
(2) $29 x+14 y=647$
$y=\#$ of bats
\[

$$
\begin{aligned}
14 x(1) & \rightarrow 14 x+14 y=392 \\
(2) & \rightarrow \frac{29 x+14 y}{}=647- \\
-15 x & =-255 \\
x & =17
\end{aligned}
$$
\]

$$
\text { sub } x=17 \text { into (1) }
$$

$$
x+y=28
$$

$$
17+y=28
$$

$$
y=11
$$

$$
\text { Mehrab sold } 11 \text { bats }
$$

b) How many gloves did he sell?

$$
17 \text { gloves }
$$

5) Maria rented the same car twice in one month. She paid $\$ 180$ the first time for 3 days and she drove a total of 150 km . The next time, she also paid $\$ 180$ and had the vehicle for only 2 days, but travelled 400 km .
a) What was the cost per day?

$$
\begin{array}{rl}
x=\text { cost per day (1) } 3 x+150 y=180 & \text { sub } y=0.2 \text { into (1) } \\
y=\text { cost per kn } \begin{array}{ll}
\text { (2) } 2 x+400 y & =180
\end{array} & 3 x+150 y=180 \\
3 x+150(0-2)=180 \\
2 x(1) 6 x+300 y=360 & 3 x+30=180 \\
3 k(2) \frac{6 x+1200 y}{}=540 & 3 x=150 \\
-900 y=-180 & x=50 \\
y=0.2 & \$ 50 \text { per day }
\end{array}
$$

b) What was the cost per km?

$$
\$ 0.20 \text { per kn }
$$

Answers:

1)a) $x=1, y=1 \quad$ b) $x=-2, y=-1 \quad$ c) no solutions $\mathbf{d)} x=-1, y=-3$
2)a) $(-2,2)$ b) $(-1,3)$ c) $(3,4)$ d) $(2,0)$
3)a) $x=3, y=2$ b) $m=-1, n=5 \quad$ c) $a=6, b=2$ d) $h=-1, k=-2$
4)a) 11 b) 17
5)a) $\$ 50 /$ day b) $\$ 0.20 / \mathrm{km}$

1) Leanne works at a greenhouse. She needs to plant a total of 32 bulbs. Two types of bulbs are available. She is asked to plant three times as many crocus bulbs as tulip bulbs. How many of each should she plant?
$x=\#$ of crocus
(1) $x+y=32$
(2) $x=3 y$
$y=\#$ of tulip

$$
\begin{gathered}
3 y+y=32 \\
4 y=32 \\
y=8
\end{gathered}
$$

$$
x=3(8)
$$

$$
\text { she should plant } 24 \text { crocus and } 8 \text { tulips. }
$$

2) James looks in his TV cabinet and finds some old Beta and VHS tapes. He has 17 tapes in all. He finds that he has three more Beta tapes than VHS tapes. How many of each type does he have?
$x=\#$ of Beta
(1) $x+y=17$
(2) $x=y+3$
$y=\#$ of UHS

$$
\begin{array}{cc}
y+3+y=17 & x=7+3 \\
2 y=14 & x=10 \\
y=7 &
\end{array}
$$

$$
\text { James has } 10 \text { Beta and } 7 \text { Utts tapes }
$$

3) The girls' soccer team held a fundraising car wash. They charged $\$ 5$ for each car and $\$ 8$ for each van. They washed 44 cars and vans and collected $\$ 262$. How many of each type of vehicle did they wash?
$x=\#$ of cars

$$
\begin{aligned}
& \text { (1) } x+y=44 \\
& \text { (2) } 5 x+8 y=262
\end{aligned}
$$

$y=\#$ of vans

$$
\begin{equation*}
5 x(1) \rightarrow 5 x+5 y=220 \tag{1}
\end{equation*}
$$

$$
\text { silo } y=14 \text { into }
$$

$$
\text { (2) } \rightarrow 5 x+8 y=262 \sim
$$

They washed 30 cars and 14 vans.

$$
\begin{array}{rlrl}
-3 y & =-42 & x+14=44 \\
y & =14 & x=30
\end{array}
$$

4) Rehman invests his summer earnings of $\$ 3050$. He invests part of the money at 8% per year, and the rest at 7.5% per year. After 1 year, these investments earn $\$ 242$ in simple interest. How much did he invest at each rate?
$x=$ amount at 8%
$y=$ amount of 7.5%

$$
\text { (1) } \begin{aligned}
& x+y=3050 \\
& y=3050-x \\
& y=3050-2650 \\
& y=400
\end{aligned}
$$

(2) $0.08 x+0.075 y=242$
$0.08 x+0.075(3050-x)=242$
$0.08 x+228.75-0.075 x=242$
$0.005 x=13.25$
$x=2650$

$$
\begin{aligned}
& \text { Rehnan invested } \$ 2650 \text { at } 8 \% \\
& \text { and } \$ 400 \text { at } 7.5 \% \text {. }
\end{aligned}
$$

5) To join Karate Klub, David must pay a monthly fee of $\$ 25$ and an initial fee of $\$ 200$. If he chooses Kool Karate, he must pay an initial fee of only $\$ 100$ but $\$ 35$ per month.
a) After how many months is the cost the same at either karate club?
$C=$ cost
(1) $C=25 m+200$ $35 n+100=25 n+200$

$$
\begin{gathered}
10 m=100 \\
n=10
\end{gathered}
$$

(2) $C=35 n+100$

$$
C=35(10)+100
$$

$$
c=350+100
$$

$$
c=450
$$

After 10 months both clubs cost $\$ 450$ c
b) If David plans to try karate for 6 months, which club should he join?

Mol Karate
c) If David decides to do karate for a year, which club should he join?

Karate Kilo.
6) White vinegar is a solution of acetic acid in water. There are two strengths of white vinegar, a 5% solution and a 10% solution. How many ml of each solution must be mixed to make 50 ml of a 9% vinegar solution?
$x=$ avaunt of 540 solution

> (1) $x+y=50$
> (2) $0.05 x+0.1 y=0.09(50)$ $y=$ ament of 1040 solution

$$
\begin{gathered}
\text { (1) } x+y=50 \\
14 \times \text { (2) } 0.5 x+y=45- \\
\hline 0.5 x=5 \\
x=10
\end{gathered}
$$

$$
\text { sulk } x=10 \text { into (1) }
$$

$$
x+y=50
$$

$$
10+y=50
$$

$$
y=40
$$

7) It took a patrol boat 5 hours to travel 60 km up a river against the current, and 3 hours for the return trip with the current. Find the speed of the boat in still water and the speed of the current.
$x=$ speed in still water
(1) $60=5(x-y)$
(2) $60=3(x+y)$
(1) $60=5 x-5 y$
(2) $60=3 x+3 y$
$60+5 y=5 x$
$60=3(12+y)+3 y$
$y=$ speed of current

$$
\begin{gathered}
12+y=x \\
12+4=x \\
x=16
\end{gathered}
$$

$$
\begin{aligned}
& 60=36+3 y+3 y \\
& 14-64
\end{aligned}
$$

$$
24=6 y
$$

$$
y=4
$$

$$
\begin{aligned}
& \text { Speed of boat in still water is } 16 \mathrm{~km} / \mathrm{h} \\
& \text { speed of current is } 4 \mathrm{~km} / \mathrm{h} \text {. }
\end{aligned}
$$

8) Kareem took 5 hours to drive 470 km from Sudbury to Brantford. For part of the trip, he drove at $100 \mathrm{~km} / \mathrm{h}$. For the rest of the trip, he drove at $90 \mathrm{~km} / \mathrm{h}$. How far did he drive at each speed?
$x=$ time driven at $90 \mathrm{~km} / \mathrm{h} \quad$ (1) $90 x+100 y=470$
$y=$ time driven at $100 \mathrm{~km} / \mathrm{h}$ (2) $x+y=5$

Remember:

distance $=$ velocity \times time

Distance caicuatrons: sub $x=3$ into (2) distance at $100 \mathrm{~km} / \mathrm{h}$

$$
\begin{array}{ll}
x+y=5 & =100 \times 2 \\
& =200 \mathrm{~km}
\end{array}
$$

$$
\begin{array}{r}
3+y=5 \\
y=2
\end{array}
$$

$$
x=3
$$

$$
\text { distance at } 90 \mathrm{kmh}
$$

$$
=90 \times 3
$$

$$
=270 \mathrm{~km}
$$

Answers

1) 24 crocus bulbs and 8 tulip bulbs
2) 10 beta tapes and 7 vhs tapes
3) 30 cars and 14 vans
4) $\$ 2650$ at $8 \% /$ year and $\$ 400$ at $7.5 \% /$ year
5) a) 10 months b) Kool Karate c) Karate Klub
6) 10 ml of the 5% solution, 40 ml of the 10% solution
7) boat in still water $16 \mathrm{~km} / \mathrm{h}$; current $4 \mathrm{~km} / \mathrm{h}$
8) 200 km at $100 \mathrm{~km} / \mathrm{h} ; 270 \mathrm{~km}$ at $90 \mathrm{~km} / \mathrm{h}$

[^0]: solution: $a=6, b=2$

