6.2 Recursive Procedures - Lesson

MCR3U Jensen

In earlier sections we used function notation to write an explicit formula to determine the value of any term in a sequence. Sometimes it is easier to calculate one term in a sequence using the previous terms.

Recursion Formula:

Recursive Functions

Functions that get new terms in the sequence by using earlier terms.

Example 1: Write the first four terms of the sequence.

a)
$$t_n = t_{n-1} - 2$$
 where $t_1 = 7$

b)
$$t_n = 2t_{n-1} + 4$$
 where $t_1 = 5$

You may also see questions asked in function notation.

Example 2: Find the first 4 terms.

$$f(n)=2f(n-1)-7$$
 where $f(1)=2$

Example 3: Find the first seven terms of the sequence.

$$t_n = t_{n-2} + t_{n-1}$$
 where $t_1 = 1$ and $t_2 = 1$

Example 4: Write a recursion formula for each sequence

Look for a pattern in the terms:

$$t_1 = -3$$

$$t_2^1 = t_1 \times (-2)$$

$$t_3^2 = t_2^1 \times (-2)$$

$$\begin{aligned} t_1 &= -3 \\ t_2 &= t_1 \times (-2) \\ t_3 &= t_2 \times (-2) \\ t_4 &= t_3 \times (-2) \end{aligned}$$

b)

c) 3, 5, 8, 12, ...