Transformations of Quadratic Functions

Transformations of Functions

Transformation:
A change made to a figure or a relation such that the figure or the graph of the relation is shifted or changed in shape.

Translations, stretches, and reflections are types of transformations.

The general function:

$$
f(x)_{\text {are transforming }}^{\text {parent }}
$$

$C g(x)=a f\left[\begin{array}{r}\text { k }(x-d)]+c\end{array}\right.$
a transformed function
takes $f(x)$ and performs
transformations to it

Changes to the y-coordinates (vertical changes)

c: vertical translation $\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{f}(\boldsymbol{x})+\boldsymbol{c}$

The graph of $g(x)=f(x)+c$ is a vertical translation of the graph of $f(x)$ by c units.

> If $\mathrm{c}>0$, the graph shifts up If $\mathrm{c}<0$, the graph shifts down
a: vertical stretch/compression $\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{a f}(\boldsymbol{x})$
The graph of $g(x)=a f(x)$ is a vertical stretch or compression of the graph of $f(x)$ by a factor of a.

> If $a>1$ or $a<-1$, vertical stretch by a factor of a.
> If $-1<a<1$, vertical compression by a factor of a.
> If $a<0$, vertical reflection (reflection over the x-axis)

Note: a vertical stretch or compression means that distance from the x -axis of each point of the parent function changes by a factor of a.

Note: for a vertical reflection, the point (x, y) becomes point ($x,-y$)

Changes to the \boldsymbol{x}-coordinates (horizontal changes)

d: horizontal translation $\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{f}(\boldsymbol{x}-\boldsymbol{d})$

The graph of $g(x)=f(x-d)$ is a horizontal translation of the graph of $f(x)$ by d units.

If $\mathrm{d}>0$, the graph shifts right
If $\mathrm{c}<0$, the graph shifts left

k: horizontal stretch/compression

The graph of $g(x)=f(k x)$ is a horizontal stretch or compression of the graph of $f(x)$ by a factor of $\frac{1}{k}$

```
If k>1 or k<-1, compressed horizontally by a factor of }\frac{1}{k
If -1<k< 1, stretched horizontally by a factor of }\frac{1}{k
If k<0, horizontal reflection (reflection in the y-axis)
```

[^0]Note: for a horizontal reflection, the point (x, y) becomes point ($-x, y$)

DO IT NOW!

a) Complete the table of values for the function $f(x)$ and $g(x)$. Then use the table of values to plot image points and graph the function $g(x)$

Quadratic Functions

Base Function:

Graph of Base Function
Key Points:

\boldsymbol{x}	\boldsymbol{y}
-3	9
-2	4
-1	1
0	0
1	1
2	4
3	9

Order of Transformations

1. stretches, compressions, reflections
2. translations

$$
a \rightarrow k \rightarrow d \rightarrow c
$$

Example 1: If $f(x)=x^{2}$, describe the changes and write the transformed function:
a) $g(x)=2 f(x)$
b) $g(x)=f(2 x)$
vertical sherch b.a.f.o. 2
horizontal compression b.a.f.o. $\frac{1}{2}$

$$
g(x)=2 x^{2}
$$

$$
g(x)=(2 x)^{2}
$$

c) $g(x)=f(x)+4$
d) $g(x)=f(x+3)$
shift yo 4 units

$$
g(x)=x^{2}+4
$$

Shift left 3 units

$$
g(x)=(x+3)^{2}
$$

e) $g(x)=-f(x)$
vertical reflection
(flip over- x-axis)

$$
g(x)=-x^{2}
$$

f) $g(x)=f(-x)$
horßontal reflection
(flip aver y-axis)

$$
g(x)=(-x)^{2}
$$

Example 2: For each of the following functions, describe the transformations to $f(x)=x^{2}$ in order and write the transformed equation.
a) $g(x)=-2 f[-3(x+3)]-1 \quad x$ into x^{2}
vertical stretch by a factor of 2
vertical reflection
horizontal compression by a factor of $1 / 3$
horizontal reflection
shift left 3 units and down 1 unit

$$
g(x)=-2[-3(x+3)]^{2}-1
$$

b)

$$
y=1 / 2 f[-3(x-2)]+5
$$

vertical compression by a factor of $1 / 2$
horizontal compression by a factor of $1 / 3$
horizontal reflection
shift right 2 units and up 5 units

$$
g(x)=\frac{1}{2}[-3(x-2)]^{2}+5
$$

Example 3: for each of the following functions...
i) make a table of values for the parent function
ii) graph the parent function $f(x)=x^{2}$
iii) describe the transformations
iv) make a table of values of image points
v) graph the transformed function and write it's equation
a) $\quad g(x)=-f(2 x)$
$a=-1$; vertical reflection (cult paly y-values by -1) $K=2$; horizontal compression by a factor of $1 / 2$ (divide x-values by 2)

$f(x)=x^{2}$

x	y
-3	9
-2	4
-1	1
0	0
1	1
2	4
3	9

$g(x)=-(2 x)^{2}$
$\frac{x}{2}$
-1.5
-1
-0.5
0
0.9
0.5
1

b) $\quad g(x)=f[-1 / 2(x-1)]$
horizontal swatch bafi 2 (ax) hormonal reflection ($-x$) shit right 1 unit. (xt)

$g(x)=\left[-\frac{1}{2}(x-1)\right]^{2}$	
$-2 x+1$	
7	
5	
3	

c) $g(x)=-2 f[-3(x+3)]-1$
vertical stretch bafo 2 . (2y)
vertical reflection (-y)
horizontal compression barf $\frac{1}{3}\left(\frac{x}{3}\right)$
hornatal reflection ($-x$)
shift left 3 units and down 1. $(x-3)(y-1)$

$$
f(x)=x^{2}
$$

$$
g(x)=-2[-3(x+3)]^{2}-1
$$

x	y
-3	9
-2	4
-1	1
0	0
1	1
2	4
3	9

$\frac{-x}{3}-3$	$-2 y-1$
-2	-19
-2.3	-9
-2.67	-3
-3	-1
-3.3	-3
-3.67	-9
-4	-19

Complete Worksheet

[^0]: Note: a vertical stretch or compression means that distance from the y-axis of each point of the parent function changes by a factor of $1 / k$.

