Transformations of Quadratic Functions

Transformations of Functions

Transformation:

A change made to a figure or a relation such that the figure or the graph of the relation is shifted or changed in shape.

Translations, stretches, and reflections are types of transformations.

The general function: g(x) = af[k(x-d)] + ca transformed function

takes f(x) and performs transformations to it

Changes to the y-coordinates (vertical changes)

c: vertical translation g(x) = f(x) + c

The graph of g(x) = f(x) + c is a vertical translation of the graph of f(x) by c units.

If c > 0, the graph shifts **up** If c < 0, the graph shifts **down**

a: vertical stretch/compression g(x) = af(x)

The graph of g(x) = af(x) is a vertical stretch or compression of the graph of f(x) by a factor of a.

If a > 1 or a < -1, **vertical stretch** by a factor of a.

If -1 < a < 1, **vertical compression** by a factor of a.

If a < 0, vertical reflection (reflection over the x-axis)

Note: a vertical stretch or compression means that distance from the x-axis of each point of the parent function changes by a factor of *a*.

Note: for a vertical reflection, the point (x, y) becomes point (x, -y)

Changes to the x-coordinates (horizontal changes)

d: horizontal translation g(x) = f(x - d)

The graph of g(x) = f(x - d) is a horizontal translation of the graph of f(x) by d units.

If d > 0, the graph shifts **right** If c < 0, the graph shifts **left**

k: horizontal stretch/compression

The graph of g(x) = f(kx) is a horizontal stretch or compression of the graph of f(x) by a factor of $\frac{1}{k}$

If k > 1 or k < -1, **compressed horizontally** by a factor of $\frac{1}{k}$

If -1 < k < 1, **stretched horizontally** by a factor of $\frac{1}{k}$

If k < 0, **horizontal reflection** (reflection in the y-axis)

Note: a vertical stretch or compression means that distance from the y-axis of each point of the parent function changes by a factor of 1/k.

Note: for a horizontal reflection, the point (x, y) becomes point (-x, y)

DO IT NOW!

a) Complete the table of values for the function f(x) and g(x). Then use the table of values to plot image points and graph the function g(x)

(2,4)	(2,4+4)
f(x):(x,f(x))	g(x):(x,f(x)+4)
A(-3, 1)	A'(-3, 5)
B(-2'-3)	B, (-1° ±)
C(1,-1)	۲)(۱,3)
D (3,-1)	D'(3,3)
fuse ion	i mogle points

Quadratic Functions

Base Function:

Key Points:

x	y
-3	9
-2	4
_1	1
0	0
)	1
2	4
3	9

Graph of Base Function

Order of Transformations

- 1. stretches, compressions, reflections
- 2. translations

Example 1: If $f(x) = x^{2}$, describe the changes and write the transformed function:

$$\mathbf{a)} \quad g(x) = 2f(x)$$

b)
$$g(x) = f(2x)$$

harizatal compression b.a.f.o. 1

c)
$$g(x) = f(x) + 4$$

$$g(\infty) = \chi^2 + 4$$

d)
$$g(x)=f(x+3)$$

e)
$$g(x) = -f(x)$$

vertical reflection
(flip over x-axis)
 $g(x) = -x^2$

f)
$$g(x) = f(-x)$$

horroral reflection
(flip over y-axis)
 $g(x) = (-x)^{2}$

Example 2: For each of the following functions, describe the transformations to $f(x) = x^2$ in order and write the transformed equation.

and write the transformed equation.

a)
$$g(x)=-2f[-3(x+3)]-1$$

vertical stretch by a factor of 2

vertical reflection

horizontal compression by a factor of 1/3

horizontal reflection

shift left 3 units and down 1 unit

$$g(x) = -2[-3(x+3)]^2 - 1$$

$$y = \frac{1}{2} f \left[-3(x-2) \right] + 5$$

vertical compression by a factor of 1/2

horizontal compression by a factor of 1/3

horizontal reflection

shift right 2 units and up 5 units

$$g(x) = \frac{1}{2} \left[-3(x-2) \right]^{2} + 5$$

Example 3: for each of the following functions...

- i) make a table of values for the parent function
- ii) graph the parent function $f(x) = x^2$
- iii) describe the transformations
- iv) make a table of values of image points
- v) graph the transformed function and write it's equation

$$a) g(x) = -f(2x)$$

a = -1; vertical reflection (nutriply y-values by-1)

K=2; hortzental compression by a factor of 1/2 (divide x-values by 2)

f(x) = x2

x	y
-3	9
- 2	4
-	1
0	Ó
1	1
3	4
3	9

9(2)=	- (2x) ²

-4
19
-4
- 1
0
-
-4
-9

b)
$$g(x)=f[-1/2(x-1)]$$

horizontal stretch base 2 (200)
horizontal reflection (-22)
shift right 1 unit. (2011)

f(a)= 22

x	y
,3	9
-2	4
-1	ĺ
0	0
1	1
2	4
3	9

g(x)=[-\f(x-1)]2

-2 ₂₀ +1	9
7	9
5	£
3	
1	0
١-	(
-3	4
-5	9

c)
$$g(x) = -2 f[-3(x+3)] - 1$$

vertical stretch bafo 2. (dy)
vertical reflection (-y)
horizontal compression boofo & (3)
horizontal reflection (-x)
shift left 3 units and down 1. (2-3) (y-1)

•	
x	y
-3	9
-2	4
-1	J
0	Q
1	1
2	4
3	9

$$g(x) = -2[-3(x+3)]^2 - 1$$

2 - 3	-24-1
-2	- 19
-2.3	-9
-2.67	-3
- 3	•
-3.3	-3
-3.67	-9
- 4	-19

Complete Worksheet