Transformations of $f(x)=\frac{1}{x}$

Transformations of Functions

Transformation:
A change made to a figure or a relation such that the figure or the graph of the relation is shifted or changed in shape.

Translations, stretches, and reflections are types of transformations.

The general function: $f(x) \begin{aligned} & \text { parent function you } \\ & \text { are transforming }\end{aligned}$ $\boldsymbol{C} g(x)=a f\left[\begin{array}{l}\text { k }(x-d)]+c\end{array}\right.$
a transformed function
takes $f(x)$ and performs
transformations to it

Changes to the y-coordinates (vertical changes)

c: vertical translation $\quad \boldsymbol{g}(\boldsymbol{x})=\boldsymbol{f}(\boldsymbol{x})+\boldsymbol{c}$

The graph of $g(x)=f(x)+c$ is a vertical translation of the graph of $f(x)$ by c units.

> If $\mathrm{c}>0$, the graph shifts up If $\mathrm{c}<0$, the graph shifts down
a: vertical stretch/compression $\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{a f}(\boldsymbol{x})$
The graph of $g(x)=a f(x)$ is a vertical stretch or compression of the graph of $f(x)$ by a factor of a.

> If $a>1$ or $a<-1$, vertical stretch by a factor of a.
> If $-1<a<1$, vertical compression by a factor of a.
> If $a<0$, vertical reflection (reflection over the x-axis)

Note: a vertical stretch or compression means that distance from the x -axis of each point of the parent function changes by a factor of a.

Note: for a vertical reflection, the point (x, y) becomes point ($x,-y$)

Changes to the \boldsymbol{x}-coordinates (horizontal changes)

d: horizontal translation $\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{f}(\boldsymbol{x}-\boldsymbol{d})$

The graph of $g(x)=f(x-d)$ is a horizontal translation of the graph of $f(x)$ by d units.

> | If $d>0$, the graph shifts right |
| :--- |
| If $d<0$, the graph shifts left |

k: horizontal stretch/compression

The graph of $g(x)=f(k x)$ is a horizontal stretch or compression of the graph of $f(x)$ by a factor of $\frac{1}{k}$

```
If k>1 or k<-1, compressed horizontally by a factor of }\frac{1}{k
If -1<k< , stretched horizontally by a factor of }\frac{1}{k
If k<0, horizontal reflection (reflection in the y-axis)
```

[^0]Note: for a horizontal reflection, the point (x, y) becomes point ($-x, y$)

Rational Functions

Base Function: $f(x)=\frac{1}{x}$
Graph of Base Function
Key Points:

Asymptotes

Asymptote: a line that a curve approaches more and more closely but never touches.

The function $F(x)=\frac{1}{x}$ has two asymptotes:
Vertical Asymptote: Division by zero is undefined. Therefore the expression in the denominator of the function can not be zero. Therefore $x \neq 0$. This is why the vertical line $x=0$ is an asymptote for this function.

Horizontal Asymptote: For the range, there can never be a situation where the result of the division is zero. Therefore the line $y=0$ is a horizontal asymptote. For all functions where the denominator is a higher degree than the numerator, there will by a horizontal asymptote at $y=0$.

Example 1: Describe the combination of transformations that must be applied to the base function $f(x)=\frac{1}{x}$ to obtain the transformed function. Then, write the corresponding equation.
a)

$$
g(x)=4 f(x-3)+0.5
$$

vertical stretch by a factor of 4
shift right 3 units
shift up 0.5 units

$$
\begin{aligned}
g(x) & =4\left(\frac{1}{x-3}\right)+0.5 \\
& \ddots \\
g(x) & =\frac{4}{x-3}+0.5
\end{aligned}
$$

b)

$$
g(x)=f[-2(x+0.5)]-1
$$

horizontal compression by a factor of 1/2
horizontal reflection
shift left 0.5 units
shift down 1 unit

$$
g(x)=\frac{1}{-2(x+0.5)}-1
$$

Example 2: for each of the following functions...
i) make a table of values for the parent function $f(x)=1 / x$
ii) describe the transformations
iii) make a table of values of image points
iv) graph the transformed function and write it's equation
a)
vertical stretch by a factor of 2
shift right 1 unit
shift up 2 units
(2y)
$f(20)=\frac{1}{x}$

x	y
-2	$-1 / 2$
-1	-1
$-1 / 2$	-2
0	undefined
$1 / 2$	2
1	1
2	$1 / 2$

$$
\begin{gathered}
g(x)=2\left(\frac{1}{x-1}\right)+2 \\
\downarrow \\
g(x)=\frac{2}{x-1}+2
\end{gathered}
$$

b)

vertical reflection $(-y)$ asyptide
horizontal compression by a factor of $1 / 2$
shift left 0.5 units $\quad(x-0.5)$
shift down 1 unit
$(y-1)$

\boldsymbol{x}	\boldsymbol{y}
-2	$-1 / 2$
-1	-1
$-1 / 2$	-2
0	undefined
$1 / 2$	2
1	1
2	$1 / 2$

Complete Worksheet

[^0]: Note: a vertical stretch or compression means that distance from the y-axis of each point of the parent function changes by a factor of $1 / k$.

