Transformations of \sqrt{x}

Transformations of Functions

Transformation:
A change made to a figure or a relation such that the figure or the graph of the relation is shifted or changed in shape.

Translations, stretches, and reflections are types of transformations.

The general function:

$$
f(x){ }_{\text {pare transforming }}^{\text {pare }}
$$

$$
C^{g}(x)=a f[k(x-d)]+c
$$

a transformed function
takes $f(x)$ and performs
transformations to it

Changes to the y-coordinates (vertical changes)

c: vertical translation $\quad \boldsymbol{g}(\boldsymbol{x})=\boldsymbol{f}(\boldsymbol{x})+\boldsymbol{c}$

The graph of $g(x)=f(x)+c$ is a vertical translation of the graph of $f(x)$ by c units.

> If $\mathrm{c}>0$, the graph shifts up If $\mathrm{c}<0$, the graph shifts down
a: vertical stretch/compression $\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{a f}(\boldsymbol{x})$
The graph of $g(x)=a f(x)$ is a vertical stretch or compression of the graph of $f(x)$ by a factor of a.

> If $a>1$ or $a<-1$, vertical stretch by a factor of a.
> If $-1<a<1$, vertical compression by a factor of a.
> If $a<0$, vertical reflection (reflection over the x-axis)

Note: a vertical stretch or compression means that distance from the x -axis of each point of the parent function changes by a factor of a.

Note: for a vertical reflection, the point (x, y) becomes point ($x,-y$)

Changes to the \boldsymbol{x}-coordinates (horizontal changes)

d: horizontal translation $\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{f}(\boldsymbol{x}-\boldsymbol{d})$

The graph of $g(x)=f(x-d)$ is a horizontal translation of the graph of $f(x)$ by d units.

> | If $d>0$, the graph shifts right |
| :--- |
| If $d<0$, the graph shifts left |

k: horizontal stretch/compression

The graph of $g(x)=f(k x)$ is a horizontal stretch or compression of the graph of $f(x)$ by a factor of $\frac{1}{k}$

```
If k>1 or k<-1, compressed horizontally by a factor of }\frac{1}{k
If -1<k< , stretched horizontally by a factor of }\frac{1}{k
If k<0, horizontal reflection (reflection in the y-axis)
```

[^0]Note: for a horizontal reflection, the point (x, y) becomes point ($-x, y$)

Radical (square root) Functions

Base Function: $f(x)=\sqrt{x}$

> Graph of Base Function

Key Points:

Example 1: Using the parent function $f(x)=\sqrt{x}$, describe the transformations and write the equation of the transformed function $g(x)$.

$$
g(x)=-2 f[-1 / 3(x+6)]-5
$$

- Vertical stretch bafo 2
- vertical reflection (reflection across the x-axis)
- Horizontal stretch bafo 3
- Horizontal reflection (reflection across the y-axis)
- Phase shift 6 units left
- Translate 5 units down

$$
g(x)=-2 \sqrt{-\frac{1}{3}(x+6)}-5
$$

Example 2: for each of the following functions...
i) make a table of values for the parent function
ii) graph the parent function $f(x)=\sqrt{\mathrm{x}}$
iii) describe the transformations
iv) make a table of values of image points
v) graph the transformed function and write it's equation
a)

$$
g(x)=\frac{1}{2} f(x)+1
$$

vertical compression by a factor of $\frac{1}{2}$ $\left(\frac{4}{2}\right)$

Shift up 1 unit $(y+1)$

$f(x)=\sqrt{x}$

x	y
0	0
1	1
4	2
9	3

$$
\begin{aligned}
& g(x)=\frac{1}{2} \sqrt{x}+1 \\
& \hline x
\end{aligned} \frac{\frac{y}{2}+1}{|c| c \mid} \begin{array}{|c|c|}
\hline 0 & 1 \\
\hline 1 & 1.5 \\
\hline 4 & 2 \\
\hline 9 & 2.5 \\
\hline
\end{array}
$$

b)

$$
g(x)=-f[2(x-3)]
$$

vertical reflection (-y)
horizontal compression $\left(\frac{x}{2}\right)$
shift right 3 units $(x+3)$

$$
f(x)=\sqrt{x}
$$

\boldsymbol{x}	\boldsymbol{y}
0	0
1	1
4	2
9	3

$$
g(x)=-\sqrt{2(x-3)}
$$

$\frac{x}{2}+3$	$-y$
3	0
3.5	-1
5	-2
7.5	-3

c)

$$
g(x)=-2 f(x+3)-1
$$

vertical stretch (2y)
by a factor of 2
vertical reflection ($-y$)
shift left 3 units ($x-3$)
shift dawn I unit $(y=1)$

$$
f(x)=\sqrt{x}
$$

\boldsymbol{x}	\boldsymbol{y}
0	0
1	1
4	2
9	3

$$
g(x)=-2 \sqrt{x+3}-1
$$

$x-3$	$-2 y-1$
-3	-1
-2	-3
1	-5
6	-7

d)

$$
g(x)=3 f\left[-\frac{1}{2}(x+2)\right]+1
$$

vertical stretch
by a factor of 3
(By)
horizontal stretch
by a factor of 2
(ax)
horizontal reflection
shift left 2 units
shift up 1 unit
$f(A)=\sqrt{x}$

\boldsymbol{x}	\boldsymbol{y}
0	0
1	1
4	2
9	3

Complete Worksheet

[^0]: Note: a vertical stretch or compression means that distance from the y-axis of each point of the parent function changes by a factor of $1 / k$.

