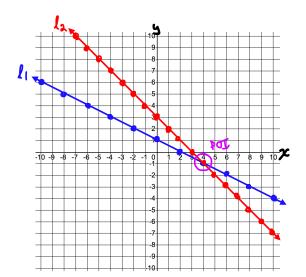
W1 – Solving Linear Systems by GRAPHING

MPM2D


Jensen

5

1) Solve each system by graphing.

a)
$$\ell_1: y = 2x + 1$$

 $\ell_2: y = x - 2$
Solution: $\chi_2 = -3, y = -5$
Line 1
 $y = \frac{1}{2} \frac{$

b)
$$\ell_1: x + 2y = 2$$

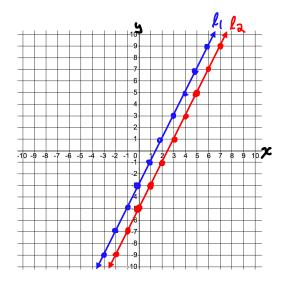
 $\ell_2: x + y = 3$

Line 1

 $\chi_{+}ay = 2$

 $dy = -\chi_{+}a$

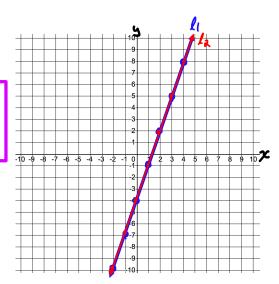
 $y = \frac{1}{2} + \frac{1}{2}$



c)
$$\ell_1: y = 2x - 3$$

 $\ell_2: 2x - y = 5$

Line 1


$$y = dx - 3$$

 $zx - y = 5$
 $zx - y = 5$
 $zx - y = 5$
 $zx - 5 = y$
 $y = ax - 5 = y$
 $y = ax - 5^{-1}$
 $zx - y = 5$
 $zx - 5 = y$
 $zx - 5 = y$

No solutions. The lines are parallel and distinct

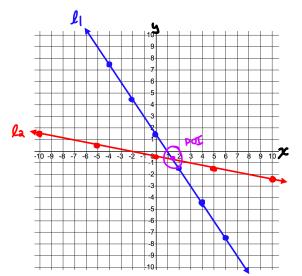
d)
$$\ell_1: 3x = y + 4$$

 $\ell_2: 6x - 2y - 8 = 0$

Infinitely many solutions. The lines are parallel and coincident.

e)
$$\ell_1: 3x + 2y = 3$$

 $\ell_2: 2x + 10y = -5$


Line 1

$$3x + ay = 3$$

 $ay = -3x + 3$
 $y = -\frac{3}{3}x + \frac{3}{4}x + \frac{3}{4}x$

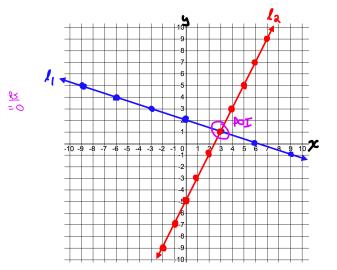
Estimated solution:

$$x = 1.5$$
, $y = -0.8$
 $x = \frac{1}{5}$
 $y = -\frac{1}{5}$

 \sim

f)
$$\ell_1: 2x + 6y - 12 = 0$$

 $\ell_2: 6x - 3y - 15 = 0$
Solution: $\chi = 3, y = 1$


r

-

ر

Line 1

$$2x + 6y - 12 = 6$$

 $6y = -2x + 12$
 $y = -\frac{2}{3}x + 2$
 $y = -\frac{1}{3}x + 2$
 $y = -\frac{1}{3}$
 $y = -$

2) Without graphing, determine whether each system has one solution, no solutions, or infinitely many solutions. Explain.

a)
$$\ell_1: 2x + y = 5$$

 $\ell_2: 2x + 10y = -5$
Line 1
 $dx + y = 5$
 $y = -ax + 5$
 $y = -ax + 5$
 $y = -\frac{1}{2}x - \frac{1}{3}$
 $y = -\frac{1}{3}x - \frac{1}{3}x - \frac{1}{3}x$

Answers:

1)a) (-3, -5) **b)** (4, -1) **c)** no solutions; parallel and distinct **d)** infinite solutions; parallel and coincident

e) (1.5, -0.8) this is an approximate answer f) (3,1)

2)a) one solution b) no solutions c) infinitely many solutions