Jensen

 $B(x_2, y_2)$

 $rise_{y_2-y_3}$

To find the ______ of a line segment, you must find the middle (average) of both the x and y coordinates of the endpoints. If A has coordinates (x_1, y_1) and B has coordinates (x_2, y_2) , then the coordinates of the midpoint of line segment AB are $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$

 $(length of AB)^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$

length of $AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

Example 1: Calculate the length and midpoint of the line segment joining the endpoints C(2, -4) and D(-3,5).

 $run \\ x_2 - x_1$

Example 2: Calculate the length and midpoint of the line segment joining the endpoints A(6, -1) and B(-3,7).

Example 3: Calculate the length and midpoint of the line segment joining the endpoints $E\left(-\frac{5}{8},\frac{1}{8}\right)$ and $F(4,\frac{3}{4})$.

Example 4: If line segment AB has point A(5,7) and a midpoint at (4,8), what are the coordinates of point B?

Example 5: Triangle DEF has vertices D(1,3), E(-3,2), and F(-2,-2).

a) Classify the triangle by side length

b) Determine the perimeter of the triangle rounded to the nearest tenth.

c) Is it a right-angle triangle? Give proof.