To find the \qquad of a line segment, you must find the middle (average) of both the x and y coordinates of the endpoints. If A has coordinates $\left(x_{1}, y_{1}\right)$ and B has coordinates $\left(x_{2}, y_{2}\right)$, then the coordinates of the midpoint of line segment AB are $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

To find the \qquad of a line segment, we first construct a right-angle triangle using the rise and run of the line segment. The run is the difference in the x-coordinates of the endpoints, and the rise is the difference in the y-coordinates of the endpoints. You can then use Pythagorean Theorem, $a^{2}+$ $b^{2}=c^{2}$ to calculate the length of the line segment.
$(\text { length of } A B)^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}$

run
$x_{2}-x_{1}$
length of $A B=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Example 1: Calculate the length and midpoint of the line segment joining the endpoints $C(2,-4)$ and $D(-3,5)$.

Example 2: Calculate the length and midpoint of the line segment joining the endpoints $A(6,-1)$ and $B(-3,7)$.

Example 3: Calculate the length and midpoint of the line segment joining the endpoints $E\left(-\frac{5}{8}, \frac{1}{8}\right)$ and $F\left(4, \frac{3}{4}\right)$.

Example 4: If line segment $A B$ has point $A(5,7)$ and a midpoint at $(4,8)$, what are the coordinates of point B ?

Example 5: Triangle DEF has vertices $D(1,3), E(-3,2)$, and $F(-2,-2)$.
a) Classify the triangle by side length

b) Determine the perimeter of the triangle rounded to the nearest tenth.
c) Is it a right-angle triangle? Give proof.

