L1 - Midpoint and Length of a Line Segment
MPM2D
Jensen

To find the midpoint of a line segment, you must find the middle (average) of both the x and y coordinates of the endpoints. If A has coordinates $\left(x_{1}, y_{1}\right)$ and B has coordinates $\left(x_{2}, y_{2}\right)$, then the coordinates of the midpoint of line segment AB are $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

To find the length of a line segment, we first construct a rightangle triangle using the rise and run of the line segment. The run is the difference in the x-coordinates of the endpoints, and the rise is the difference in the y-coordinates of the endpoints. You can then use Pythagorean Theorem, $a^{2}+b^{2}=c^{2}$ to calculate the length of the line segment.

length of $A B=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Example 1: Calculate the length and midpoint of the line segment joining the endpoints $C(2,-4)$ and $D(-3,5)$.

$$
\begin{aligned}
\text { midpoint }_{C D} & =\left(\frac{2+(-3)}{2}, \frac{-4+5}{2}\right) \\
& =\left(\frac{-1}{2}, \frac{1}{2}\right) \\
\text { length }_{C D} & =\sqrt{(-3-2)^{2}+[5-(-4)]^{2}} \\
& =\sqrt{(-5)^{2}+\left(9^{2}\right)} \\
& =\sqrt{106} \\
& \simeq 10.3 \text { units }
\end{aligned}
$$

Example 2: Calculate the length and midpoint of the line segment joining the endpoints $A(6,-1)$ and $B(-3,7)$.

$$
\begin{aligned}
\text { midpoint }_{A B} & =\left(\frac{6+(-3)}{2}, \frac{-1+7}{2}\right) \\
& =\left(\frac{3}{2}, 3\right) \\
\text { length }_{A B} & =\sqrt{(-3-6)^{2}+[7-(-1)]^{2}} \\
& =\sqrt{(-9)^{2}+(8)^{2}} \\
& =\sqrt{145} \\
& \approx 12.04 \text { units }^{2}
\end{aligned}
$$

Example 3: Calculate the length and midpoint of the line segment joining the endpoints $E\left(-\frac{5}{8}, \frac{1}{8}\right)$ and $F\left(4, \frac{3}{4}\right)$.

$$
\begin{array}{rlrl}
\text { Midpoint }_{E F} & =\left(\frac{-\frac{5}{8}+\frac{32}{8}}{2}, \frac{\frac{1}{8}+\frac{6}{8}}{2}\right) & \quad \begin{aligned}
\text { length } & =\sqrt{\left(-\frac{5}{8}-\frac{32}{8}\right)^{2}+\left(\frac{1}{8}-\frac{6}{8}\right)^{2}} \\
& =\left(\frac{27}{8}, \frac{\frac{7}{8}}{2}\right) \\
& =\sqrt{\left(\frac{-32}{8}\right)^{2}+\left(\frac{-5}{8}\right)^{2}} \\
& =\left(\frac{27}{16}, \frac{7}{16}\right)
\end{aligned} & =\sqrt{\frac{697}{32}} \\
& \simeq 4.67 \text { units }
\end{array}
$$

Example 4: If line segment $A B$ has point $A(5,7)$ and a midpoint at $(4,8)$, what are the coordinates of point B ? $x_{1} y_{1}$

$$
\begin{aligned}
& \text { mid point } A B=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
& (4,8)=\left(\frac{5+x_{2}}{2}, \frac{7+y_{2}}{2}\right) \\
& 4=\frac{5+x_{2}}{2} \quad 8=\frac{7+y_{2}}{2} \\
& 8=5+x_{2} \quad \\
& x_{2}=3 \\
& \infty B(3,9)
\end{aligned}
$$

Example 5: Triangle DEF has vertices $D(1,3), E(-3,2)$, and $F(-2,-2)$.
a) Classify the triangle by side length

$$
\text { length }_{E F}=\sqrt{[-2-(-3)]^{2}+(-2-2)^{2}}=\sqrt{17}
$$

$$
l_{\text {length }}^{D E} \text { }=\sqrt{(-3-1)^{2}+(2-3)^{2}}=\sqrt{17}
$$

$$
\text { length }_{D F}=\sqrt{(-2-1)^{2}+(-2-3)^{2}}=\sqrt{34}
$$

$\therefore \triangle D E F$ is isosceles.

b) Determine the perimeter of the triangle rounded to the nearest tenth.

$$
\begin{aligned}
\text { Perimeter } & =\sqrt{17}+\sqrt{17}+\sqrt{34} \\
& \simeq \mid 4.1 \text { units }
\end{aligned}
$$

c) Is it a right-angle triangle? Give proof.

If it's a right triangle, $a^{2}+b^{2}=c^{2}$
Check:

$$
\begin{gathered}
\sqrt{17}^{2}+\sqrt{17}^{2} \stackrel{?}{=} \sqrt{34}^{2} \\
17+17 \stackrel{?}{=} 34 \\
34=34
\end{gathered}
$$

oo it is a right triangle.

